[1] C.A. Bollino, F. Asdrubali, P. Polinori, S. Bigerna, S. Micheli, C. Guattari, A. Rotili, A Note on Medium- and Long-Term Global Energy Prospects and Scenarios, Sustainability 9 (2017) 833. Doi: 10.3390/su9050833. [2] F.M. Drumond Chequer, G.A.R. de Oliveira, E.R. Anastacio Ferraz, J. Carvalho, M.V. Boldrin Zanoni, D.P. de Oliveir, Textile dyes: dyeing process and environmental impact.In: Eco-Friendly Textile Dyeing and Finishing. InTechOpen, London, 2013. [3] A. Tiwari, M. Joshi, N. Salvi, D. Gupta, S. Gandhi, K. Rajpoot, R.K. Tekade, Toxicity of pharmaceutical azo dyes. Pharmacokinetics and Toxicokinetic Considerations. Amsterdam: Elsevier, (2022) 569–603. [4] R. Al-Tohamy, S.S. Ali, F.H. Li, K.M. Okasha, Y.A.G. Mahmoud, T. Elsamahy, H.X. Jiao, Y.Y. Fu, J.Z. Sun, A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety, Ecotoxicol. Environ. Saf. 231 (2022) 113160. [5] S.H. Hashemi, M. Kaykhaii, Chapter 15 - Azo dyes: Sources, occurrence, toxicity, sampling, analysis, and their removal methods, in: T. Dalu, N.T. Tavengwa (Eds.), Emerging Freshwater Pollutants, Elsevier, 2022: pp. 267–287. [6] A.K. Sahoo, A. Dahiya, B.K. Patel, Chapter 6 - Biological methods for textile dyes removal from wastewaters, in: M.P. Shah, S. Rodriguez-Couto, R.T. Kapoor (Eds.), Development in Wastewater Treatment Research and Processes, Elsevier, 2022: pp. 127–151. [7] B. Fang, Z.P. Xing, D.D. Sun, Z.Z. Li, W. Zhou, Hollow semiconductor photocatalysts for solar energy conversion, Adv. Powder Mater. 1 (2) (2022) 100021. [8] F.B. Zhang, X.M. Wang, H.N. Liu, C.L. Liu, Y. Wan, Y.Z. Long, Z.Y. Cai, Recent advances and applications of semiconductor photocatalytic technology, Appl. Sci. 9 (12) (2019) 2489. [9] R. Ameta, M.S. Solanki, S. Benjamin, S.C. Ameta, Photocatalysis. Advanced Oxidation Processes for Waste Water Treatment. Amsterdam: Elsevier, (2018) 135–175. [10] J.N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drogui, J. Naja, Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches, Desalination. 404 (2017) 1–21. Doi: 10.1016/j.desal.2016.10.011. [11] H. Maddah, A. Chogle, Biofouling in reverse osmosis: phenomena, monitoring, controlling and remediation, Appl. Water Sci. 7 (6) (2017) 2637–2651. [12] K. Sen, J.K. Datta, N.K. Mondal, Box-Behnken optimization of glyphosate adsorption on to biofabricated calcium hydroxyapatite: kinetic, isotherm, thermodynamic studies, Appl. Nanosci. 11 (2) (2021) 687–697. [13] K. Sen, S. Chattoraj, A comprehensive review of glyphosate adsorption with factors influencing mechanism: Kinetics, isotherms, thermodynamics study. Intelligent Environmental Data Monitoring for Pollution Management. Amsterdam: Elsevier, (2021) 93–125. [14] P. Debnath, K. Sen, A. Mondal, A. Mondal, N.K. Mondal, Insight into photocatalytic degradation of amoxicillin by biofabricated granular zinc oxide nanoparticle: mechanism, optimization and toxicity evaluation, Int. J. Environ. Res. 15 (3) (2021) 571–583. [15] V.K. Gupta, R. Jain, A. Nayak, S. Agarwal, M. Shrivastava, Removal of the hazardous dye—Tartrazine by photodegradation on titanium dioxide surface, Mater. Sci. Eng. C 31 (5) (2011) 1062–1067. [16] T.A. Saleh, V.K. Gupta, Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide, J. Colloid Interface Sci. 371 (1) (2012) 101–106. [17] W.Q. Wei, Z. Wei, R.Z. Li, Z.H. Li, R. Shi, S.X. Ouyang, Y.H. Qi, D.L. Philips, H. Yuan, Subsurface oxygen defects electronically interacting with active sites on In2O3 for enhanced photothermocatalytic CO2 reduction, Nat. Commun. 13 (1) (2022) 3199. [18] Q. Guo, C.Y. Zhou, Z.B. Ma, X.M. Yang, Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges, Adv. Mater. 31 (50) (2019) 1901997. [19] B. Jung, F. Abu-Rub, A. El-Ghenymy, W. Deng, Y. Li, B. Batchelor, A. Abdel-Wahab, Photocatalytic reduction of chlorate in aqueous TiO2 suspension with hole scavenger under simulated solar light, Emergent Mater. 4 (2) (2021) 435–446. [20] J. Schneider, M. Matsuoka, M. Takeuchi, J.L. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials, Chem. Rev. 114 (19) (2014) 9919–9986. [21] P. Raizada, V. Soni, A. Kumar, P. Singh, A.A. Parwaz Khan, A.M. Asiri, V.K. Thakur, V.H. Nguyen, Surface defect engineering of metal oxides photocatalyst for energy application and water treatment, J. Materiomics 7 (2) (2021) 388–418. [22] M.M. Kaid, A.S. Khder, S.A. Ahmed, A.A. Ibrahim, H.M. Altass, R.I. Alsantali, R.S. Jassas, M.A. Khder, M.M. Al-Rooqi, Z. Moussa, A.I. Ahmed, High-efficacy hierarchical Dy2O3/TiO2 nanoflower toward wastewater reclamation: a combined photoelectrochemical and photocatalytic strategy, ACS Omega 7 (20) (2022) 17223–17233. [23] J.T. Schneider, D.S. Firak, R.R. Ribeiro, P. Peralta-Zamora, Use of scavenger agents in heterogeneous photocatalysis: truths, half-truths, and misinterpretations, Phys. Chem. Chem. Phys. 22 (27) (2020) 15723–15733. [24] U. Mahanta, M. Khandelwal, A.S. Deshpande, TiO2@SiO2 nanoparticles for methylene blue removal and photocatalytic degradation under natural sunlight and low-power UV light, Appl. Surf. Sci. 576 (2022) 151745. [25] W.B. Zhou, B. Yu, J.Q. Zhu, K. Li, Synthesis of ZnO/Ti2C composites by electrostatic self-assembly for the photocatalytic degradation of methylene blue, J. Mater. Sci. 57 (6) (2022) 3954–3970. [26] W.B. Zhou, B. Yu, J.Q. Zhu, K. Li, Synthesis of ZnO/Ti2C composites by electrostatic self-assembly for the photocatalytic degradation of methylene blue, J. Mater. Sci. 57 (6) (2022) 3954–3970. [27] T. Tan, D. Beydoun, R. Amal, Effects of organic hole scavengers on the photocatalytic reduction of selenium anions, J. Photochem. Photobiol. A 159 (3) (2003) 273–280. [28] N. Kitchamsetti, M.S. Ramteke, S.R. Rondiya, S.R. Mulani, M.S. Patil, R.W. Cross, N.Y. Dzade, R.S. Devan, DFT and experimental investigations on the photocatalytic activities of NiO nanobelts for removal of organic pollutants, J. Alloys Compd. 855 (2021) 157337. [29] W. Navarra, I. Ritacco, O. Sacco, L. Caporaso, M. Farnesi Camellone, V. Venditto, V. Vaiano, Density functional theory study and photocatalytic activity of ZnO/N-doped TiO2 heterojunctions, J. Phys. Chem. C 126 (16) (2022) 7000–7011. [30] J. Ning, J. Zhang, R. Dai, Q.A. Wu, L. Zhang, W.B. Zhang, J.F. Yan, F.C. Zhang, Experiment and DFT study on the photocatalytic properties of La-doped Bi2WO6 nanoplate-like materials, Appl. Surf. Sci. 579 (2022) 152219. [31] Y. Gurdal, M. Iannuzzi, DFT-based theoretical simulations for photocatalytic applications using TiO2.In:Titanium Dioxide. InTechOpen, London, (2017). [32] H. Hamad, M.M. Elsenety, W. Sadik, A.G. El-Demerdash, A. Nashed, A. Mostafa, S. Elyamny, The superior photocatalytic performance and DFT insights of S-scheme CuO@TiO2 heterojunction composites for simultaneous degradation of organics, Sci. Rep. 12 (1) (2022) 2217. [33] G. Ruano, M.L. Pedano, M. Albornoz, J.D. Fuhr, M.L. Martiarena, G. Zampieri, Deprotonation of the amine group of Glyphosate studied by XPS and DFT, Appl. Surf. Sci. 567 (2021) 150753. [34] K. Sen, N.K. Mondal, Glyphosate adsorptive behaviour using magnetic activated carbon: kinetics, isotherms, and DFT study, Biomass Convers. Biorefin. (2022) 1–14. [35] K. Sen, N.K. Mondal, Facile fabrication of amino-functionalized silicon flakes for removal of organophosphorus herbicide: in silico optimization, Water Conserv. Sci. Eng. 5 (1–2) (2020) 67–80. [36] A. Hajra, N.K. Mondal, Phytofabrication of silver nanoparticles using Elephantopus scaber and Azadirachta indica leaf extract and its effect on larval and pupal mortality of Culex quinquefasciatus, Asian Pac. J. Trop. Dis. 6 (12) (2016) 979–986. [37] Y.H. Chang, M.C. Wu, Enhanced photocatalytic reduction of Cr(VI) by combined magnetic TiO2-based NFs and ammonium oxalate hole scavengers, Catalysts 9 (1) (2019) 72. [38] K.V. Kumar, K. Porkodi, F. Rocha, Langmuir–Hinshelwood kinetics–A theoretical study, Catal. Commun. 9 (1) (2008) 82–84. [39] S. Armenise, E. García-Bordejé, J.L. Valverde, E. Romeo, A. Monzón, A Langmuir–Hinshelwood approach to the kinetic modelling of catalytic ammonia decomposition in an integral reactor, Phys. Chem. Chem. Phys. 15 (29) (2013) 12104. [40] D. Sharma, T. Singh, A DFT study of polyaniline/ZnO nanocomposite as a photocatalyst for the reduction of methylene blue dye, J. Mol. Liq. 293 (2019) 111528. [41] E.M. El Mouchtari, L. Bahsis, L. El Mersly, H. Anane, S. Lebarillier, A. Piram, S. Briche, P. Wong-Wah-Chung, S. Rafqah, Insights in the aqueous and adsorbed photocatalytic degradation of carbamazepine by a biosourced composite: kinetics, mechanisms and DFT calculations, Int. J. Environ. Res. 15 (1) (2021) 135–147. [42] A.K. Mishra, DFT study of structural, vibrational and electronic properties of polyaniline pernigraniline model compounds, J. Comput. Sci. 10 (2015) 195–208. [43] R. Zhang, B. Xiang, L. Xu, L.R. Xia, C.H. Lu, Density functional theory (DFT) investigation on the structure and photocatalysis properties of double-perovskite Gd1-xCaxBaCo2O5+δ (0≤x≤0.4), RSC Adv. 9 (35) (2019) 20161–20168. [44] F. Li, P.H. Du, W. Liu, X.S. Li, H.D. Ji, J. Duan, D.Y. Zhao, Hydrothermal synthesis of graphene grafted titania/titanate nanosheets for photocatalytic degradation of 4-chlorophenol: solar-light-driven photocatalytic activity and computational chemistry analysis, Chem. Eng. J. 331 (2018) 685–694. [45] T.A. Kandiel, L. Robben, A. Alkaim, D. Bahnemann, Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities, Photochem. Photobiol. Sci. 12 (4) (2013) 602–609. [46] J. Saha, A. Begum, A. Mukherjee, S. Kumar, A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye, Sustain. Environ. Res. 27 (5) (2017) 245–250. [47] S.X. Dai, Y.Q. Wu, T. Sakai, Z.L. Du, H. Sakai, M. Abe, Preparation of highly crystalline TiO2 nanostructures by acid-assisted hydrothermal treatment of hexagonal-structured nanocrystalline titania/cetyltrimethyammonium bromide nanoskeleton, Nanoscale Res. Lett. 5 (11) (2010) 1829–1835. [48] R. Otero, A.L. Vázquez de Parga, J.M. Gallego, Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces, Surf. Sci. Rep. 72 (3) (2017) 105–145. [49] S. Chelbi, D. Djouadi, A. Chelouche, L. Hammiche, T. Touam, A. Doghmane, Effects of Ti-precursor concentration and annealing temperature on structural and morphological properties of TiO2 nano-aerogels synthesized in supercritical ethanol, SN Appl. Sci. 2 (5) (2020) 872. [50] F. Esmaile, H. Koohestani, H. Abdollah-Pour, Characterization and antibacterial activity of silver nanoparticles green synthesized using Ziziphora clinopodioides extract, Environ. Nanotechnol. Monit. Manag. 14 (2020) 100303. [51] R. Saravanan, D. Manoj, J.Q. Qin, M. Naushad, F. Gracia, A.F. Lee, M.M. Khan, M.A. Gracia-Pinilla, Mechanothermal synthesis of Ag/TiO2 for photocatalytic methyl orange degradation and hydrogen production, Process. Saf. Environ. Prot. 120 (2018) 339–347. [52] B. Erdem, R.A. Hunsicker, G.W. Simmons, E.D. Sudol, V.L. Dimonie, M.S. El-Aasser, XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation, Langmuir 17 (9) (2001) 2664–2669. [53] I. Ganesh, A.K. Gupta, P.P. Kumar, P.S.C. Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Preparation and characterization of Ni-doped TiO2 materials for photocurrent and photocatalytic applications, Sci. World J. 2012 (2012) 127326. [54] S.S. El-Deen, A.M. Hashem, A.E. Abdel Ghany, S. Indris, H. Ehrenberg, A. Mauger, C.M. Julien, Anatase TiO2 nanoparticles for lithium-ion batteries, Ionics 24 (10) (2018) 2925–2934. [55] N. Joshi, N. Jain, A. Pathak, J. Singh, R. Prasad, C.P. Upadhyaya, Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities, J. Sol Gel Sci. Technol. 86 (3) (2018) 682–689. [56] M. Humayun, Z.P. Zheng, Q.Y. Fu, W. Luo, Photodegradation of 2, 4-dichlorophenol and rhodamine B over n-type ZnO/p-type BiFeO3 heterojunctions: detailed reaction pathway and mechanism, Environ. Sci. Pollut. Res. Int. 26 (17) (2019) 17696–17706. [57] H.L. Zhao, F.P. Pan, Y. Li, A review on the effects of TiO2 surface point defects on CO2 photoreduction with H2O, J. Materiomics 3 (1) (2017) 17–32. [58] L. Guan, X.B. Chen, Photoexcited charge transport and accumulation in anatase TiO2, ACS Appl. Energy Mater. 1 (8) (2018) 4313–4320. [59] J. Preclíková, P. Galář, F. Trojánek, B. Rezek, Y. Němcová, P.Malý, Photoluminescence of nanocrystalline titanium dioxide films loaded with silver nanoparticles, J. Appl. Phys. 109 (8) (2011) 083528. [60] D. Komaraiah, E. Radha, J. Sivakumar, M.V. Ramana Reddy, R. Sayanna, Photoluminescence and photocatalytic activity of spin coated Ag+ doped anatase TiO2 thin films, Opt. Mater. 108 (2020) 110401. [61] S. Keerthana, S. Gayathri, R. Yuvakkumar, L. Kungumadevi, G. Ravi, A.G. Al-Sehemi, D. Velauthapillai, Conversion and reducing agent effect on zero valent iron into Fe3O4 for photocatalytic degradation under UV light irradiation, Environ. Res. 214 (2022) 113959. [62] P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–vis spectra, J. Phys. Chem. Lett. 9 (23) (2018) 6814–6817. [63] J. Singh, B. Satpati, S. Mohapatra, Structural, optical and plasmonic properties of Ag-TiO2 hybrid plasmonic nanostructures with enhanced photocatalytic activity, Plasmonics 12 (3) (2017) 877–888. [64] B. Bharti, S. Kumar, H.N. Lee, R. Kumar, Formation of oxygen vacancies and Ti(3+) state in TiO2 thin film and enhanced optical properties by air plasma treatment, Sci. Rep. 6 (2016) 32355. [65] D. Hariharan, P. Thangamuniyandi, A.J. Christy, R. Vasantharaja, P. Selvakumar, S. Sagadevan, A. Pugazhendhi, L.C. Nehru, Enhanced photocatalysis and anticancer activity of green hydrothermal synthesized Ag@TiO2 nanoparticles, J. Photochem. Photobiol. B 202 (2020) 111636. [66] C.L. Zhang, H. Hua, J.L. Liu, X.Y. Han, Q.P. Liu, Z.D. Wei, C.B. Shao, C.G. Hu, Enhanced photocatalytic activity of nanoparticle-aggregated Ag-AgX(X = Cl, Br)@TiO2 microspheres under visible light, Nanomicro Lett. 9 (4) (2017) 49. [67] K. Lotfy, A novel model for photothermal excitation of variable thermal conductivity semiconductor elastic medium subjected to mechanical ramp type with two-temperature theory and magnetic field, Sci Rep. 9 (2019) 3319. [68] T.A. Kurniawan, M.T. Zhu, D. Fu, S.K. Yeap, M.H.D. Othman, R. Avtar, T. Ouyang, Functionalizing TiO2 with graphene oxide for enhancing photocatalytic degradation of methylene blue (MB) in contaminated wastewater, J. Environ. Manag. 270 (2020) 110871. [69] A. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications, Catalysts 3 (1) (2013) 189–218. [70] N.K.A. Hamed, M.K. Ahmad, N.H.H. Hairom, A.B. Faridah, M.H. Mamat, A. Mohamed, A.B. Suriani, C.F. Soon, F.I.M. Fazli, S.M. Mokhtar, M. Shimomura, Photocatalytic degradation of methylene blue by flowerlike rutile-phase TiO2 film grown via hydrothermal method, J. Sol Gel Sci. Technol. 102 (3) (2022) 637–648. [71] M. Khalil, E.S. Anggraeni, T.A. Ivandini, E. Budianto, Exposing TiO2 (001) crystal facet in nano Au-TiO2 heterostructures for enhanced photodegradation of methylene blue, Appl. Surf. Sci. 487 (2019) 1376–1384. [72] C.F. Zhang, L.G. Qiu, F. Ke, Y.J. Zhu, Y.P. Yuan, G.S. Xu, X.A. Jiang, A novel magnetic recyclable photocatalyst based on a core–shell metal–organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye, J. Mater. Chem. A 1 (45) (2013) 14329. [73] L. Wolski, K. Sobańska, A. Walkowiak, K. Akhmetova, J. Gryboś, M. Frankowski, M. Ziolek, P. Pietrzyk, Enhanced adsorption and degradation of methylene blue over mixed niobium-cerium oxide - Unraveling the synergy between Nb and Ce in advanced oxidation processes, J. Hazard. Mater. 415 (2021) 125665. [74] K. Prakash, P. Senthil Kumar, S. Pandiaraj, K. Saravanakumar, S. Karuthapandian, Controllable synthesis of SnO2photocatalyst with superior photocatalytic activity for the degradation of methylene blue dye solution, J. Exp. Nanosci. 11 (14) (2016) 1138–1155. [75] S. Gupta, R. Fernandes, R. Patel, M. Spreitzer, N. Patel, A review of cobalt-based catalysts for sustainable energy and environmental applications, Appl. Catal. A 661 (2023) 119254. [76] Y. Wang, Q. Wu, Y. Li, L. Liu, Z. Geng, Y. Li, J. Chen, W. Bai, G. Jiang, Z. Zhao, Controlled fabrication of TiO2/C3N4 core–shell nanowire arrays: a visible-light-responsive and environmental-friendly electrode for photoelectrocatalytic degradation of bisphenol A, J Mater Sci. 53 (2018) 11015–11026. [77] C. Santhosh, A. Malathi, E. Daneshvar, P. Kollu, A. Bhatnagar, Photocatalytic degradation of toxic aquatic pollutants by novel magnetic 3D-TiO2@HPGA nanocomposite, Sci. Rep. 8 (1) (2018) 15531. |