[1] C. Mondal, S.K. Pal, B. Samanta, D. Dutta, S. Raj, Analysis and significance of prediction models for higher heating value of coal: An updated review, J. Therm. Anal. Calorim. 148(15) (2023) 7521-7538. [2] China Statistical Yearbook of 2022, China Statistics Press, 2022. [3] Y. Shi, Y.F. Xia, B.H. Lu, N. Liu, L. Zhang, S.J. Li, W. Li, Emission inventory and trends of NOx for China, 2000-2020, J. Zhejiang Univ. SCIENCE A 15(6) (2014) 454-464. [4] X.L. Kong, S. Yang, K.X. Zhang, Q. Wang, J.P. Li, T.T. Jiao, J. Shangguan, S.J. Liu, Coupling effect of Fe-based catalyst on Nitrogen oxides control in the process of nitrogen reduction and combustion denitration of long flame coal pyrolysis, Energy Sources Part A Recovery Util. Environ. Eff. 44(1) (2022) 2618-2634. [5] J. Jang, S. Ahn, S. Na, J. Koo, H. Roh, G. Choi, Effect of a plasma burner on NOx reduction and catalyst regeneration in a marine SCR system, Energies 15(12) (2022) 4306. [6] J. Shen, J.X. Liu, H. Zhang, X.M. Jiang, NO x emission characteristics of superfine pulverized anthracite coal in air-staged combustion, Energy Convers. Manag. 74(2013) 454-461. [7] J.C. Chen, H.L. Huang, J.S. Huang, Influences of different operation conditions on the emission characteristics of O2/recycled flue gas (RFG) waste incineration, Energy Fuels 22(5) (2008) 2997-3004. [8] Q.G. Lyu, S.Y. Li, Huang C. Current situation and development suggestions of coal clean and efficient combustion technology in industry field, Bulletin of the Chinese Academy Science (34) 4(2019) 392-400. (in Chinese). [9] Y.H. Yang, F. Zhang, S.Y. Yang, Investigation and research on the treatment of air pollution by heating boiler of Beijing university of chemical technology, IOP Conf. Ser.: Earth Environ. Sci. 647(1) (2021) 012213. [10] Z.Q. Ouyang, J.G. Zhu, Q.G. Lu, Experimental study on preheating and combustion characteristics of pulverized anthracite coal, Fuel 113(2013) 122-127. [11] Y. Zhang, J.G. Zhu, Q.G. Lyu, J.Z. Liu, F. Pan, J.H. Zhang, The ultra-low NOx emission characteristics of pulverized coal combustion after high temperature preheating, Fuel 277(2020) 118050. [12] J.Z. Liu, Y.H. Liu, J.G. Zhu, Z.Q. Ouyang, C.B. Man, S.J. Zhu, Y. Zhang, Q.G. Lyu, Bituminous coal deep regulated ultra-low NOx flameless combustion with fluidized self-preheating fuel: A 2 MWth experimental study, Fuel 294(2021) 120549. [13] W. Liu, Z.Q. Ouyang, X.Y. Cao, Y.J. Na, D.F. Liu, S.J. Zhu, Effects of secondary air velocity on NO emission with coal preheating technology, Fuel 256(2019) 115898. [14] Z.Q. Ouyang, H.L. Ding, W. Liu, S.Y. Li, X.Y. Cao, Effect of the staged secondary air on NOx emission of pulverized semi-coke flameless combustion with coal preheating technology, Fuel 291(2021) 120137. [15] W. Liu, Z.Q. Ouyang, X.Y. Cao, Y.J. Na, Experimental research on flameless combustion with coal preheating technology, Energy & Fuels 32(2018) 7132-7141. [16] S.J. Zhu, Q.G. Lyu, J.G. Zhu, C. Liang, Experimental study on NOx emissions of pulverized bituminous coal combustion preheated by a circulating fluidized bed, J. Energy Inst. 92(2) (2019) 247-256. [17] Y. Zhang, J.G. Zhu, Q.G. Lyu, F. Pan, S.J. Zhu, Characteristics of preheating combustion of power coal with high coking properties, J. Therm. Sci. 30(4) (2021) 1108-1115. [18] S.J. Zhu, J.G. Zhu, Q.G. Lyu, F. Pan, Y. Zhang, W. Liu, NO emissions under pulverized char combustion in O2/CO2/H2O preheated by a circulating fluidized bed, Fuel 252(2019) 512-521. [19] K. Sugawara, Y. Tozuka, K. Abe, T. Sugawara, Fossil energy. release rates of volatile matter and sulfur from solid phase in rapid pyrolysis of coals, Kagaku Kogaku Ronbunshu 20(6) (1994) 971-975. [20] P.Q. Wang, C.A. Wang, C.W. Wang, M.B. Yuan, J.P. Zhang, Y.B. Du, D.F. Che, Investigation on co-gasification characteristics of semicoke and bituminous coal in a CO2 atmosphere at high temperatures, Energy Fuels 34(12) (2020) 16132-16146. [21] J. Liu, Y.F. Zhang, Y. Wang, L. Chen, Studies on low-temperature pyrolysis characteristics and kinetics of the binder cold-briquetted lignite, J. Energy Inst. 89(4) (2016) 594-605. [22] R. He, T. Suda, M. Takafuji, T. Hirata, J. Sato, Analysis of low NO emission in high temperature air combustion for pulverized coal, Fuel 83(9) (2004) 1133-1141. [23] H.X. Wu, J. Cai, Q.Q. Ren, C.T. Shi, A.R. Zhao, Q.G. Lyu, A thermal and chemical fuel pretreatment process for NOx reduction from cement kiln, Fuel Process. Technol. 210(2020) 106556. [24] X. Hu, C. Dong, Q. Lu, J. Zhang, H. Zhang, Z. Dong,Y. Yang, The influence of biomass gasification gas on the reduction of N2O emissions in a fluidized bed, Energy Sources, Part A: Recovery Utilization & Environmental Effects 35(15) (2013) 1410-1417. [25] S. Zhong, H.R. Yue, F. Baitalow, M. Reinmoller, B. Meyer, In-situ investigation of coal particle fragmentation induced by thermal stress and numerical analysis of the main influencing factors, Energy 215(2021) 119138. [26] H.X. Wu, J. Cai, Q.Q. Ren, J. Xu, F.H. Chu, Q.G. Lyu, An efficient and economic denitration technology based on fuel pretreatment for cement cleaner production, J. Clean. Prod. 272(2020) 122669. [27] Z.Q. Ouyang, H.L. Ding, W. Liu, X.Y. Cao, S.J. Zhu, Effect of the primary air ratio on combustion of the fuel preheated in a self-preheating burner, Combust. Sci. Technol. 194(6) (2022) 1247-1264. [28] T. Song, W.J. Guo, L.H. Shen, Fuel nitrogen conversion in chemical looping with oxygen uncoupling of coal with a CuO-based oxygen carrier, Energy Fuels 29(6) (2015) 3820-3832. |