[1] Sloan, E.D.; Koh, C.A. Clathrate Hydrates of Natural Gases, 3rd ed., CRC Press,Boca Raton, FL,USA,2008. [2] P. Babu, P. Linga, R. Kumar, P. Englezos, A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture, Energy 85(2015) 261-279. [3] I. Ben Attouche Sfaxi, V. Belandria, A.H. Mohammadi, R. Lugo, D. Richon, Phase equilibria of CO2+N2 and CO2+CH4 clathrate hydrates: Experimental measurements and thermodynamic modelling, Chem. Eng. Sci. 84(2012) 602-611. [4] A. Eslamimanesh, A.H. Mohammadi, D. Richon, P. Naidoo, D. Ramjugernath, Application of gas hydrate formation in separation processes: A review of experimental studies, J. Chem. Thermodyn. 46(2012) 62-71. [5] H. Ganji, M. Manteghian, K. Sadaghiani zadeh, M.R. Omidkhah, H. Rahimi Mofrad, Effect of different surfactants on methane hydrate formation rate, stability and storage capacity, Fuel 86(3) (2007) 434-441. [6] E. Sadeh, A. Farhadian, M. Maddah, M.E. Semenov, A. Mohammadi, F. Wang, Branched sulfonated promoter: Achieving high methane uptake and foam-free gas recovery for solidified gas storage, Chem. Eng. J. 487(2024) 150674. [7] A. Farhadian, A. Mohammadi, M. Maddah, E. Sadeh, R. Nowruzi, R. Sharifi, Z.T. Rizi, M.M. Taheri, Y. Seo, Enhanced methane hydrate formation using a newly synthesized biosurfactant: Application to solidified gas storage, Energy 291(2024) 130290. [8] E. Sadeh, A. Farhadian, A. Mohammadi, M. Maddah, M. Pourfath, M.J. Yang, Energy-efficient storage of methane and carbon dioxide capture in the form of clathrate hydrates using a novel non-foaming surfactant: An experimental and computational investigation, Energy Convers. Manag. 293(2023) 117475. [9] X.J. Liu, J.J. Ren, D.Y. Chen, Z.Y. Yin, Comparison of SDS and L-methionine in promoting CO2 hydrate kinetics: Implication for hydrate-based CO2 storage, Chem. Eng. J. 438(2022) 135504. [10] K. Inkong, P. Rangsunvigit, S. Kulprathipanja, P. Linga, Effects of temperature and pressure on the methane hydrate formation with the presence of tetrahydrofuran (THF) as a promoter in an unstirred tank reactor, Fuel 255(2019) 115705. [11] X.B. Zhou, D.Q. Liang, Enhanced performance on CO2 adsorption and release induced by structural transition that occurred in TBAB·26H2O hydrates, Chem. Eng. J. 378(2019) 122128. [12] S. Rajabi Firoozabadi, M. Bonyadi, A comparative study on the effects of Fe3O4 nanofluid, SDS and CTAB aqueous solutions on the CO2 hydrate formation, J. Mol. Liq. 300(2020) 112251. [13] H. Pahlavanzadeh, M. Khanlarkhani, S. Rezaei, A.H. Mohammadi, Experimental and modelling studies on the effects of nanofluids (SiO2, Al2O3, and CuO) and surfactants (SDS and CTAB) on CH4 and CO2 clathrate hydrates formation, Fuel 253(2019) 1392-1405. [14] Song, Z. Science and application of surfactant; China Petrochemical Press,Beijing, 2015. [15] Rosen, M. J. Geminis: a new generation of surfactants. Chem. Tech. 1993, 23(3), 30-33. [16] Q. Sun, B. Chen, Y.Y. Li, G.Q. Yuan, Z. Xu, X.Q. Guo, X.X. Li, W.J. Lan, L.Y. Yang, Enhanced separation of coal bed methane via bioclathrates formation, Fuel 243(2019) 10-14. [17] Q. Sun, B. Chen, Y.Y. Li, Z. Xu, X.Q. Guo, X.X. Li, W.J. Lan, L.Y. Yang, Promotion effects of mung starch on methane hydrate formation equilibria/rate and gas storage capacity, Fluid Phase Equilib. 475(2018) 95-99. [18] S. Alizadeh, M. Manteghian, A. Jafari, A. Mohammadi, Sucralose, an eco-friendly novel promoter of carbon dioxide hydrate formation: Kinetic investigation, J. Mol. Liq. 395(2024) 123825. [19] Abolfazl M. The Impact of Sodium Dodecyl Sulfate on Methane Hydrate Volume Fraction in a Batch Rocking Cell Reactor. Prog. Biochem. Res. 2024, 7(1), 22-23. [20] H.L. Huang, X.J. Liu, H.F. Lu, C.L. Xu, J.Z. Zhao, Y. Li, Y.H. Gu, Z.Y. Yin, Introducing sodium lignosulfonate as an effective promoter for CO2 sequestration as hydrates targeting gaseous and liquid CO2, Adv. Appl. Energy 14(2024) 100175. [21] L.T. Chen, C.Y. Sun, G.J. Chen, Y.Q. Nie, Z.S. Sun, Y.T. Liu, Measurements of hydrate equilibrium conditions for CH4, CO2, and CH4+ C2H6+ C3H8 in various systems by step-heating method, Chin. J. Chem. Eng. 17(4) (2009) 635-641. [22] H.L. Li, J.P. Jakobsen, J. Stang, Hydrate formation during CO2 transport: Predicting water content in the fluid phase in equilibrium with the CO2-hydrate, Int. J. Greenh. Gas Contr. 5(3) (2011) 549-554. [23] G.J. Chen, T.M. Guo, A new approach to gas hydrate modelling, Chem. Eng. J. 71(2) (1998) 145-151. [24] A. Mohammadi, N. Babakhanpour, A. Mohammad Javidani, G. Ahmadi, Corn’s dextrin, a novel environmentally friendly promoter of methane hydrate formation, J. Mol. Liq. 336(2021) 116855. [25] L. Mu, H.X. Zhao, Z.Q. Zhou, J.G. Zeng, Q.Y. Cui, Improving methane hydrate formation kinetics and gas storage capacity with a promoter, Energy Fuels 37(19) (2023) 14778-14789. [26] B.B. Ge, X.Y. Li, D.L. Zhong, Y.Y. Lu, Investigation of natural gas storage and transportation by gas hydrate formation in the presence of bio-surfactant sulfonated lignin, Energy 244(2022) 122665. [27] H.P. Veluswamy, A. Kumar, R. Kumar, P. Linga, An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application, Appl. Energy 188(2017) 190-199. [28] Y.M. Song, R.Q. Liang, F. Wang, D.H. Zhang, L. Yang, D.B. Zhang, Enhanced methane hydrate formation in the highly dispersed carbon nanotubes-based nanofluid, Fuel 285(2021) 119234. [29] D.W. Kang, W. Lee, Y.H. Ahn, J.W. Lee, Confined tetrahydrofuran in a superabsorbent polymer for sustainable methane storage in clathrate hydrates, Chem. Eng. J. 411(2021) 128512. [30] A. Mohammadi, M. Manteghian, A.H. Mohammadi, A. Jahangiri, Induction time, storage capacity, and rate of methane hydrate formation in the presence of SDS and silver nanoparticles, Chem. Eng. Commun. 204(12) (2017) 1420-1427. [31] A. Mohammadi, The roles TBAF and SDS on the kinetics of methane hydrate formation as a cold storage material, J. Mol. Liq. 309(2020) 113175. |