[1] P.A. Athulya, N. Chandrasekaran, Interactions of natural colloids with microplastics in aquatic environment and its impact on FTIR characterization of polyethylene and polystyrene microplastics, J. Mol. Liq. 369(2023) 120950. [2] L. Olazar, J.F. Saldarriaga, G. Lopez, L. Santamaria, M. Amutio, M. Olazar, M. Artetxe, Insight into the joint valorization of CO2 and waste plastics by pyrolysis and in line dry reforming for syngas production, Fuel Process. Technol. 253(2024) 108024. [3] A.M. Gonzalez-Aguilar, V. Perez-Garcia, J.M. Riesco-Avila, A thermo-catalytic pyrolysis of polystyrene waste review: A systematic, statistical, and bibliometric approach, Polymers 15(6) (2023) 1582. [4] Z.C. Jin, L.J. Yin, D.Z. Chen, Y.J. Jia, J. Yuan, Y.Y. Hu, Co-pyrolysis characteristics of typical components of waste plastics in a falling film pyrolysis reactor, Chin. J. Chem. Eng. 26(10) (2018) 2176-2184. [5] I.M. Maafa, Pyrolysis of polystyrene waste: A review, Polymers 13(2) (2021) 225. [6] K.B. Park, Y.S. Jeong, B. Guzelciftci, J.S. Kim, Two-stage pyrolysis of polystyrene: Pyrolysis oil as a source of fuels or benzene, toluene, ethylbenzene, and xylenes, Appl. Energy 259(2020) 114240. [7] A. Demirbas, Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons, J. Anal. Appl. Pyrolysis 72(1) (2004) 97-102. [8] M. Artetxe, G. Lopez, M. Amutio, I. Barbarias, A. Arregi, R. Aguado, J. Bilbao, M. Olazar, Styrene recovery from polystyrene by flash pyrolysis in a conical spouted bed reactor, Waste Manag. 45(2015) 126-133. [9] G. Audisio, F. Bertini, Molecular weight and pyrolysis products distribution of polymers I. Polystyrene, J. Anal. Appl. Pyrolysis 24(1) (1992) 61-74. [10] Y.F. Shen, Y.F. Hu, M.J. Wang, W.R. Bao, L.P. Chang, K.C. Xie, Speciation and thermal transformation of sulfur forms in high-sulfur coal and its utilization in coal-blending coking process: A review, Chin. J. Chem. Eng. 35(2021) 70-82. [11] S. Nomura, Recent developments in cokemaking technologies in Japan, Fuel Process. Technol. 159(2017) 1-8. [12] S. Nomura, K. Kato, The effect of plastic size on coke quality and coking pressure in the co-carbonization of coal/plastic in coke oven, Fuel 85(1) (2006) 47-56. [13] M.A. Diez, R. Alvarez, Advances in the recycling of plastic wastes for metallurgical coke production, J. Mater. Cycles Waste Manag. 15(3) (2013) 247-255. [14] X.X. Wang, J.W. Mu, Q.D. Zhu, Application of waste plastics in iron and steel industry, Industrial Heating 50(2021) 59-64. [15] S. Melendi, M.A. Diez, R. Alvarez, C. Barriocanal, Relevance of the composition of municipal plastic wastes for metallurgical coke production, Fuel 90(4) (2011) 1431-1438. [16] M.A. Diez, C. Barriocanal, R. Alvarez, Plastic wastes as modifiers of the thermoplasticity of coal, Energy Fuels 19(6) (2005) 2304-2316. [17] X.C. Liu, G.Q. Li, H.Y. Zhao, Y.G. Ye, R.L. Xie, Z.G. Zhao, Z. Lei, P. Cui, Changes in caking properties of caking bituminous coals during low-temperature pyrolysis process, Fuel 321(2022) 124023. [18] X. Li, Z.H. Qin, L.H. Bu, Z. Yang, C.Y. Shen, Structural analysis of functional group and mechanism investigation of caking property of coking coal, J. Fuel Chem. Technol. 44(4) (2016) 385-393. [19] M. Guaita, O. Chiantore, L. Costa, Changes in degree of polymerization in the thermal degradation of polystyrene, Polym. Degrad. Stab. 12(4) (1985) 315-332. [20] I.C. McNeill, M. Zulfiqar, T. Kousar, A detailed investigation of the products of the thermal degradation of polystyrene, Polym. Degrad. Stab. 28(2) (1990) 131-151. [21] K.B. Park, J.S. Kim, Pyrolysis products from various types of plastics using TG-FTIR at different reaction temperatures, J. Anal. Appl. Pyrolysis 171(2023) 105983. [22] X.C. Liu, H. Song, K.S. Han, J. Hu, Z.G. Zhao, P. Cui, Insight into low-temperature co-pyrolysis of Qinglongshan lean coal with organic matter in Huadian oil shale, Energy 285(2023) 128678. [23] J.F. Fang, Y.M. Xuan, Q. Li, Preparation of polystyrene spheres in different particle sizes and assembly of the PS colloidal crystals, Sci. China Technol. Sci. 53(11) (2010) 3088-3093. [24] J.B. Zhou, Y. Qiao, W.X. Wang, E.W. Leng, J.C. Huang, Y. Yu, M.H. Xu, Formation of styrene monomer, dimer and trimer in the primary volatiles produced from polystyrene pyrolysis in a wire-mesh reactor, Fuel 182(2016) 333-339. [25] J. Nisar, G. Ali, A. Shah, M. Iqbal, R. Ali Khan, Sirajuddin, F. Anwar, R. Ullah, M.S. Akhter, Fuel production from waste polystyrene via pyrolysis: Kinetics and products distribution, Waste Manag. 88(2019) 236-247. [26] D.S. Achilias, I. Kanellopoulou, P. Megalokonomos, E. Antonakou, A.A. Lappas, Chemical recycling of polystyrene by pyrolysis: Potential use of the liquid product for the reproduction of polymer, Macromol. Mater. Eng. 292(8) (2007) 923-934. [27] J.K. Koo, S.W. Kim, Y.H. Seo, Characterization of aromatic hydrocarbon formation from pyrolysis of polyethylene-polystyrene mixtures, Resour. Conserv. Recycl. 5(4) (1991) 365-382. [28] J.A. Onwudili, N. Insura, P.T. Williams, Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time, J. Anal. Appl. Pyrolysis 86(2) (2009) 293-303. [29] G.G. Cameron, Mechanism of volatile production during pyrolysis of polystyrene, Makromol. Chem. 100(1) (1967) 255-261. [30] M. Yang, Y. Shibasaki, Mechanisms of thermal degradation of polystyrene, polymethacrylonitrile, and their copolymers on flash pyrolysis, J. Polym. Sci. A Polym. Chem. 36(13) (1998) 2315-2330. [31] S.E. Levine, L.J. Broadbelt, Reaction pathways to dimer in polystyrene pyrolysis: A mechanistic modeling study, Polym. Degrad. Stab. 93(5) (2008) 941-951. [32] T.M. Kruse, O.S. Woo, H.W. Wong, S.S. Khan, L.J. Broadbelt, Mechanistic modeling of polymer degradation: A comprehensive study of polystyrene, Macromolecules 35(20) (2002) 7830-7844. [33] T.M. Kruse, S.E. Levine, H.W. Wong, E. Duoss, A.H. Lebovitz, J.M. Torkelson, L.J. Broadbelt, Binary mixture pyrolysis of polypropylene and polystyrene: A modeling and experimental study, J. Anal. Appl. Pyrolysis 73(2) (2005) 342-354. [34] J. Pfaendtner, X.R. Yu, L.J. Broadbelt, Quantum chemical investigation of low-temperature intramolecular hydrogen transfer reactions of hydrocarbons, J. Phys. Chem. A 110(37) (2006) 10863-10871. [35] D.K. Ojha, R. Vinu, Resource recovery via catalytic fast pyrolysis of polystyrene using zeolites, J. Anal. Appl. Pyrolysis 113(2015) 349-359. [36] L.H. Hou, W.J. Ma, X. Luo, S.Z. Tao, P. Guan, J.Z. Liu, Chemical structure changes of lacustrine Type-II kerogen under semi-open pyrolysis as investigated by solid-state 13C NMR and FT-IR spectroscopy, Mar. Petrol. Geol. 116(2020) 104348. [37] W. Li, Y.M. Zhu, Structural characteristics of coal vitrinite during pyrolysis, Energy Fuels 28(6) (2014) 3645-3654. [38] Q. Wang, Y.C. Hou, W.Z. Wu, Q. Liu, Z.Y. Liu, The structural characteristics of kerogens in oil shale with different density grades, Fuel 219(2018) 151-158. [39] X.C. Liu, G.Q. Li, H.Y. Zhao, F. Cheng, R.L. Xie, Z.G. Zhao, P. Cui, Upgrading deashed Huadian oil shale using low-temperature pyrolysis treatment and its application in coal-blending coking, Fuel Process. Technol. 223(2021) 106994. [40] M.A. Fichera, U. Braun, B. Schartel, H. Sturm, U. Knoll, C. Jager, Solid-state NMR investigations of the pyrolysis and thermo-oxidative decomposition products of a polystyrene/red phosphorus/magnesium hydroxide system, J. Anal. Appl. Pyrolysis 78(2) (2007) 378-386. [41] R.H. Still, O.A. Peters, Vacuum pyrolysis of polystyrene oligomers, J. Appl. Polym. Sci. 50(6) (1993) 989-994. [42] A.M. Fernandez, C. Barriocanal, S. Gupta, D. French, Effect of blending carbon-bearing waste with coal on mineralogy and reactivity of cokes, Energy Fuels 28(1) (2014) 291-298. [43] M.A. Diez, R. Alvarez, C. Barriocanal, Coal for metallurgical coke production: Predictions of coke quality and future requirements for cokemaking, Int. J. Coal Geol. 50(1-4) (2002) 389-412. [44] S. Nomura, K. Kato, T. Nakagawa, I. Komaki, The effect of plastic addition on coal caking properties during carbonization, Fuel 82(14) (2003) 1775-1782. |