中国化学工程学报 ›› 2025, Vol. 77 ›› Issue (1): 310-327.DOI: 10.1016/j.cjche.2024.09.028
• • 上一篇
Xiaoyu Tang1,2, Facheng Qiu3, Peiqiao Liu1, Yundong Wang4, Hong Li5, Zuohua Liu1
收稿日期:
2024-05-17
修回日期:
2024-09-12
接受日期:
2024-09-13
出版日期:
2025-01-28
发布日期:
2024-11-22
通讯作者:
Zuohua Liu,E-mail:liuzuohua@cqu.edu.cn
基金资助:
Xiaoyu Tang1,2, Facheng Qiu3, Peiqiao Liu1, Yundong Wang4, Hong Li5, Zuohua Liu1
Received:
2024-05-17
Revised:
2024-09-12
Accepted:
2024-09-13
Online:
2025-01-28
Published:
2024-11-22
Contact:
Zuohua Liu,E-mail:liuzuohua@cqu.edu.cn
Supported by:
摘要: Leveraging big data signal processing offers a pathway to the development of artificial intelligence-driven equipment. The analysis of fluid flow signals and the characterization of fluid flow behavior are of critical in two-phase flow studies. Significant research efforts have focused on discerning flow regimes using various signal analysis methods. In this review, recent advances in time series signals analysis algorithms for stirred tank reactors have been summarized, and the detailed methodologies are categorized into the frequency domain methods, time-frequency domain methods, and state space methods. The strengths, limitations, and notable findings of each algorithm are highlighted. Additionally, the interrelationships between these methodologies have also been discussed, as well as the present progress achieved in various applications. Future research directions and challenges are also predicted to provide an overview of current research trends in data mining of time series for analyzing flow regimes and chaotic signals. This review offers a comprehensive summary for extracting and characterizing fluid flow behavior and serves as a theoretical reference for optimizing the characterization of chaotic signals in future research endeavors.
Xiaoyu Tang, Facheng Qiu, Peiqiao Liu, Yundong Wang, Hong Li, Zuohua Liu. Recent advances in time-series analysis methods for identifying fluid flow characteristics in stirred tank reactors[J]. 中国化学工程学报, 2025, 77(1): 310-327.
Xiaoyu Tang, Facheng Qiu, Peiqiao Liu, Yundong Wang, Hong Li, Zuohua Liu. Recent advances in time-series analysis methods for identifying fluid flow characteristics in stirred tank reactors[J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 310-327.
[1] L. Pakzad, F. Ein-Mozaffari, S.R. Upreti, A. Lohi, Evaluation of the mixing of non-Newtonian biopolymer solutions in the reactors equipped with the coaxial mixers through tomography and CFD, Chem. Eng. J. 215(2013) 279-296. [2] A. Aljaafreh, Agitation and mixing processes automation using current sensing and reinforcement learning, J. Food Eng. 203(2017) 53-57. [3] M. Soori, B. Arezoo, R. Dastres, Digital twin for smart manufacturing, A review. Sustain. Manuf. Serv. Econ. (2023) 100017. [4] B.W. Lee, M.P. Dudukovic, Determination of flow regime and gas holdup in gas-liquid stirred tanks, Chem. Eng. Sci. 109(2014) 264-275. [5] A.M. Jade, V.K. Jayaraman, B.D. Kulkarni, A.R. Khopkar, V.V. Ranade, Ashutosh Sharma, A novel local singularity distribution based method for flow regime identification: Gas-liquid stirred vessel with Rushton turbine, Chem. Eng. Sci. 61(2) (2006) 688-697. [6] A. Bombac, I. Zun, B. Filipic, M. Zumer, Gas-filled cavity structures and local void fraction distribution in aerated stirred vessel, AIChE J. 43(11) (1997) 2921-2931. [7] A. Shaikh, M. Al-Dahhan, A new method for online flow regime monitoring in bubble column reactors via nuclear gauge densitometry, Chem. Eng. Sci. 89(2013) 120-132. [8] R.K. Upadhyay, H.J. Pant, S. Roy, Liquid flow patterns in rectangular air-water bubble column investigated with radioactive particle tracking, Chem. Eng. Sci. 96(2013) 152-164. [9] J.R. van Ommen, S. Sasic, J. van der Schaaf, S. Gheorghiu, F. Johnsson, M.O. Coppens, Time-series analysis of pressure fluctuations in gas-solid fluidized beds-A review, Int. J. Multiph. Flow 37(5) (2011) 403-428. [10] N.Y. Lu, F.L. Wang, F.R. Gao, Combination method of principal component and wavelet analysis for multivariate process monitoring and fault diagnosis, Ind. Eng. Chem. Res. 42(18) (2003) 4198-4207. [11] E. Reynders, System identification methods for (operational) modal analysis: Review and comparison, Arch. Comput. Meth. Eng. 19(1) (2012) 51-124. [12] F.C. Qiu, Z.H. Liu, R.L. Liu, X.J. Quan, C.Y. Tao, Y.D. Wang, Fluid flow signals processing based on fractional Fourier transform in a stirred tank reactor, ISA Trans. 90(2019) 268-277. [13] W. Aigner, S. Miksch, H. Schumann, C. Tominski, Visualization of Time-oriented Data, Springer, London, 2011. [14] D. Kotsakos, G. Trajcevski, D. Gunopulos, C.C. Aggarwal, Time-series data clustering, In Data Clustering, Chapman and Hall/CRC, Boca Raton, 2018, pp. 357-380. [15] Z.Z. Xing, J. Pei, E. Keogh, A brief survey on sequence classification, SIGKDD Explor. Newsl. 12(1) (2010) 40-48. [16] P.M. Atkinson, C. Jeganathan, J. Dash, C. Atzberger, Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology, Remote. Sens. Environ. 123(2012) 400-417. [17] J.B. Allen, D.A. Berkley, J. Blauert, Multimicrophone signal-processing technique to remove room reverberation from speech signals, J. Acoust. Soc. Am. 62(4) (1977) 912-915. [18] J.B. Allen, L.R. Rabiner, A unified approach to short-time Fourier analysis and synthesis, Proc. IEEE 65(11) (1977) 1558-1564. [19] L. Rabiner, J. Allen, Short-time Fourier analysis tecniques for FIR system identification and power spectrum estimation, IEEE Trans. Acoust. Speech Signal Process. 27(2) (1979) 182-192. [20] P.S. Addison, The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance (2nd ed.), CRC Press, Boca Raton, 2017. [21] H. Liu, R. Yang, Z. Duan, H.P. Wu, A hybrid neural network model for marine dissolved oxygen concentrations time-series forecasting based on multi-factor analysis and a multi-model ensemble, Engineering 7(12) (2021) 1751-1765. [22] J.E. Jacob, G.K. Nair, T. Iype, A. Cherian, Diagnosis of encephalopathy based on energies of EEG subbands using discrete wavelet transform and support vector machine, Neurol. Res. Int. 2018(2018) 1613456. [23] J. Gilles, Empirical wavelet transform, IEEE Trans. Signal Process. 61(16) (2013) 3999-4010. [24] M.S. Sadabadi, M. Shafiee, M. Karrari, System identification of two-dimensional continuous-time systems using wavelets as modulating functions, ISA Trans. 47(3) (2008) 256-266. [25] N.E. Huang, S.R. Long, Z. Shen, The mechanism for frequency downshift in nonlinear wave evolution, Adv. Appl. Mech. 32(1996) 59-117, 117A, 117B, 117C. [26] M.R. Chernick, Wavelet methods for time series analysis, Technometrics 43(4) (2001) 491. [27] D. Labat, Recent advances in wavelet analyses: Part 1. A review of concepts, J. Hydrol. 314(1-4) (2005) 275-288. [28] Y.F. Sang, A review on the applications of wavelet transform in hydrology time series analysis, Atmos. Res. 122(2013) 8-15. [29] I. Daubechies, Ten lectures on wavelets, Rutgers University and AT&T Bell Laboratories, CBMS-INSF, Regional Conference Series in Applied Mathematics, 1992. [30] S.G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(R), Trans. Am. Math. Soc. 315(1) (1989) 69-87. [31] H. Liu, W.D. Wang, C.L. Xiang, L.J. Han, H.Z. Nie, A de-noising method using the improved wavelet threshold function based on noise variance estimation, Mech. Syst. Signal Process. 99(2018) 30-46. [32] A. Mojahed, L.A. Bergman, A.F. Vakakis, New inverse wavelet transform method with broad application in dynamics, Mech. Syst. Signal Process. 156(2021) 107691. [33] X.G. Deng, X.M. Tian, Multivariate statistical process monitoring using multi-scale kernel principal component analysis, In: Fault Detection, Supervision and Safety of Technical Processes 2006, Elsevier, Amsterdam, 2007, pp. 108-113. [34] P.C. Russell, J. Cosgrave, D. Tomtsis, A. Vourdas, L. Stergioulas, G.R. Jones, Extraction of information from acoustic vibration signals using Gabor transform type devices, Meas. Sci. Technol. 9(8) (1998) 1282-1290. [35] M. Varanis, J.P.C.V. Norenberg, R.T. Rocha, C. Oliveira, J.M. Balthazar, A.M. Tusset, A comparison of time-frequency methods for nonlinear dynamics and chaos analysis in an energy harvesting model, Braz. J. Phys. 50(3) (2020) 235-244. [36] N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q.A. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond. A 454(1971) (1998) 903-995. [37] C. Wang, H.L. Zhang, W.H. Fan, P. Ma, A new chaotic time series hybrid prediction method of wind power based on EEMD-SE and full-parameters continued fraction, Energy 138(2017) 977-990. [38] X.H. Qiu, Y. Ren, P.N. Suganthan, G.A.J. Amaratunga, Empirical mode decomposition based ensemble deep learning for load demand time series forecasting, Appl. Soft Comput. 54(2017) 246-255. [39] A. Ortiz, J. Munilla, F.J. Martinez-Murcia, J.M. Gorriz, J. Ramirez, Empirical functional PCA for 3D image feature extraction through fractal sampling, Int. J. Neural Syst. 29(2) (2019) 1850040. [40] A. Soler, P.A. Munoz-Gutierrez, M. Bueno-Lopez, E. Giraldo, M. Molinas, Low-density EEG for neural activity reconstruction using multivariate empirical mode decomposition, Front. Neurosci. 14(2020) 175. [41] G. Rilling, P. Flandrin, P. Goncalves, On empirical mode decomposition and its algorithms, IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, Grado: IEEE 3(3) (2003) 8-11. [42] M. Kurt, H. Chen, Y.S. Lee, D.M. McFarland, L.A. Bergman, A.F. Vakakis, Nonlinear system identification of the dynamics of a vibro-impact beam: Numerical results, Arch. Appl. Mech. 82(10) (2012) 1461-1479. [43] M. Kurt, M. Eriten, D.M. McFarland, L.A. Bergman, A.F. Vakakis, Strongly nonlinear beats in the dynamics of an elastic system with a strong local stiffness nonlinearity: Analysis and identification, J. Sound Vib. 333(7) (2014) 2054-2072. [44] A. Sadhu, An integrated multivariate empirical mode decomposition method towards modal identification of structures, J. Vib. Contr. 23(17) (2017) 2727-2741. [45] H.Y. Fu, Y.T. Zhang, C. Liao, L. Mao, Z.Y. Wang, N.N. Hong, Investigating PM2.5 responses to other air pollutants and meteorological factors across multiple temporal scales, Sci. Rep. 10(2020) 15639. [46] Z.H. Wu, N. Huang, Ensemble empirical mode decomposition: A noise-assisted data analysis method, Adv. Data Sci. Adapt. Anal. 1(2009) 1-41. [47] X.K. Zhang, Q.W. Zhang, G. Zhang, Z.P. Nie, Z.F. Gui, A hybrid model for annual runoff time series forecasting using Elman neural network with ensemble empirical mode decomposition, Water 10(4) (2018) 416. [48] X.K. Zhang, Q.W. Zhang, G. Zhang, Z.P. Nie, Z.F. Gui, H.F. Que, A novel hybrid data-driven model for daily land surface temperature forecasting using long short-term memory neural network based on ensemble empirical mode decomposition, Int. J. Environ. Res. Public Health 15(5) (2018) 1032. [49] J. Zhang, R.Q. Yan, R.X. Gao, Z.H. Feng, Performance enhancement of ensemble empirical mode decomposition, Mech. Syst. Signal Process. 24(7) (2010) 2104-2123. [50] J.Z. Li, Y.H. Li, M. Ye, S.Q. Yao, C.C. Yu, L. Wang, W.D. Wu, Y.B. Wang, Forecasting the tuberculosis incidence using a novel ensemble empirical mode decomposition-based data-driven hybrid model in Tibet, China, Infect. Drug Resist. 14(2021) 1941-1955. [51] I. Daubechies, J.F. Lu, H.T. Wu, Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool, Appl. Comput. Harmon. Anal. 30(2) (2011) 243-261. [52] Y. Shi, G. Wang, J. Niu, Q. Zhang, M. Cai, B. Sun, D. Wang, M. Xue, X.D. Zhang, Classification of sputum sounds using artificial neural network and wavelet transform, Int. J. Biol. Sci. 14(8) (2018) 938-945. [53] S.J. Qin, Process data analytics in the era of big data, AIChE J. 60(9) (2014) 3092-3100. [54] H.K. Kwok, D.L. Jones, Improved instantaneous frequency estimation using an adaptive short-time Fourier transform, IEEE Trans. Signal Process. 48(10) (2000) 2964-2972. [55] R.N. Czerwinski, D.L. Jones, Adaptive short-time Fourier analysis, IEEE Signal Process. Lett. 4(2) (1997) 42-45. [56] J.G. Zhong, Y. Huang, Time-frequency representation based on an adaptive short-time Fourier transform, IEEE Trans. Signal Process. 58(10) (2010) 5118-5128. [57] H.X. Niu, E.Q. Chen, L. Qi, X. Guo, Image registration based on fractional Fourier transform, Optik 126(23) (2015) 3889-3893. [58] H.M. Ozaktas, M.A. Kutay, The fractional Fourier transform, 2001 European Control Conference (ECC), IEEE (2001) 1477-1483. [59] X.H. Su, R. Tao, X.J. Kang, Analysis and comparison of discrete fractional Fourier transforms, Signal Process. 160(2019) 284-298. [60] H.M. Ozaktas, O. Arikan, M.A. Kutay, G. Bozdagt, Digital computation of the fractional Fourier transform, IEEE Trans. Signal Process. 44(9) (1996) 2141-2150. [61] L.B. Almeida, The fractional Fourier transform and time-frequency representations, IEEE Trans. Signal Process. 42(11) (1994) 3084-3091. [62] H.M. Ozaktas, D. Mendlovic, L. Onural, B. Barshan, Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms, J. Opt. Soc. Am. A 11(2) (1994) 547-559. [63] J.R. Fonollosa, C.L. Nikias, A new positive time-frequency distribution, Proceedings of ICASSP'94, IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 1994, 4-301. [64] V. Namias, The fractional order Fourier transform and its application to quantum mechanics, IMA J. Appl. Math. 25(3) (1980) 241-265. [65] D. Mendlovic, H.M. Ozaktas, A.W. Lohmann, Fractional correlation, Appl. Opt. 34(2) (1995) 303-309. [66] L.Y. Zheng, D.M. Shi, Maximum amplitude method for estimating compact fractional Fourier domain, IEEE Signal Process. Lett. 17(3) (2010) 293-296. [67] L. Tian, Z.M. Peng, Minimal generalized time-bandwidth product method for estimating the optimum fractional Fourier order, J. Comput. Commun. 3(3) (2015) 8-12. [68] S. Nedeltchev, U. Hampel, M. Schubert, Investigation of the radial effect on the transition velocities in a bubble column based on the modified Shannon entropy, Chem. Eng. Res. Des. 115(2016) 303-309. [69] H.D. Abarbanel, Z. Gills, C. Liu, R. Roy, Nonlinear-time-series analysis of chaotic laser dynamics, Phys. Rev. A 53(1) (1996) 440-453. [70] M.T. Rosenstein, J.J. Collins, C.J. De Luca, A practical method for calculating largest Lyapunov exponents from small data sets, Phys. D Nonlinear Phenom. 65(1-2) (1993) 117-134. [71] H. Kantz, T. Schreiber, Nonlinear Time Series Analysis, Cambridge University Press, 2004. [72] D.Y. Luan, S.F. Zhang, J.P. Lu, X.G. Zhang, Chaotic characteristics enhanced by impeller of perturbed six-bent-bladed turbine in stirred tank, Results Phys. 7(2017) 1524-1530. [73] Z.H. Liu, C. Chen, R.L. Liu, C.Y. Tao, Y.D. Wang, Chaotic mixing enhanced by rigid-flexible impeller in stirred vessel, CIESC J. 65(1) (2014) 61-70. [74] D.Y. Luan, Y.M. Chen, H. Wang, Y. Wang, X. Wei, Chaotic characteristics of pseudoplastic fluid induced by 6PBT impeller in a stirred vessel, Chin. J. Chem. Eng. 27(2) (2019) 293-297. [75] P. Grassberger, I. Procaccia, Estimation of the Kolmogorov entropy from a chaotic signal, Phys. Rev. A 28(4) (1983) 2591-2593. [76] M. Costa, A.L. Goldberger, C.K. Peng, Multiscale entropy analysis of complex physiologic time series, Phys. Rev. Lett. 89(6) (2002) 068102. [77] X. Jiang, Y.R. Cai, Y. Zhao, X. Gao, D. Peng, H. Zhang, W.H. Deng, W. Fu, N. Qin, R.Z. Chang, B. Manor, J.H. Zhou, The complexity of blood pressure fluctuation mediated the effects of hypertension on walking speed in older adults, Front. Aging Neurosci. 13(2021) 640942. [78] A. Humeau-Heurtier, The multiscale entropy algorithm and its variants: A review, Entropy 17(5) (2015) 3110-3123. [79] R.A. Thuraisingham, G.A. Gottwald, On multiscale entropy analysis for physiological data, Phys. A Stat. Mech. Appl. 366(2006) 323-332. [80] Z.H. Liu, X.P. Zheng, D. Liu, Y.D. Wang, C.Y. Tao, Enhancement of liquid-liquid mixing in a mixer-settler by a double rigid-flexible combination impeller, Chem. Eng. Process. Process. Intensif. 86(2014) 69-77. [81] B. Sun, H. Chang, Y.L. Zhou, Flow regime recognition and dynamic characteristics analysis of air-water flow in horizontal channel under nonlinear oscillation based on multi-scale entropy, Entropy 21(7) (2019) 667. [82] D.Y. Gu, Y. Mei, L. Wen, X.M. Wang, Z.H. Liu, Chaotic mixing and mass transfer characteristics of fractal impellers in gas-liquid stirred tank, J. Taiwan Inst. Chem. Eng. 121(2021) 20-28. [83] G.J. Wang, S.Y. Jia, M. Liu, X.J. Song, H.Y. Li, X.R. Chang, W.B. Zhang, Impact of local thermal stimulation on the correlation between oxygen saturation and speed-resolved blood perfusion, Sci. Rep. 10(1) (2020) 183. [84] P. Bryant, R. Brown, H.D. Abarbanel, Lyapunov exponents from observed time series, Phys. Rev. Lett. 65(13) (1990) 1523-1526. [85] J.P. Eckmann, D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Mod. Phys. 57(3) (1985) 617-656. [86] K. Briggs, An improved method for estimating Liapunov exponents of chaotic time series, Phys. Lett. A 151(1-2) (1990) 27-32. [87] A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series, Phys. D Nonlinear Phenom. 16(3) (1985) 285-317. [88] G. Barna, I. Tsuda, A new method for computing Lyapunov exponents, Phys. Lett. A 175(6) (1993) 421-427. [89] Y.F. Yang, M.J. Wu, Z. Gao, Y.F. Wu, X.M. Ren, Parameters selection for calculating largest Lyapunov exponent from small data sets, J. Vib. Meas. Diagn. 32(3) (2012) 371-374, 511. [90] S. Zhou, Y. Feng, W.Y. Wu, W.H. Wang, A novel method based on the fuzzy C-means clustering to calculate the maximal Lyapunov exponent from small data, Acta Phys. Sin. 65(2) (2016) 020502. [91] S. Zhou, X.Y. Wang, Z. Wang, C. Zhang, A novel method based on the pseudo-orbits to calculate the largest Lyapunov exponent from chaotic equations, Chaos 29(3) (2019) 033125. [92] S. Zhou, X.Y. Wang, Identifying the linear region based on machine learning to calculate the largest Lyapunov exponent from chaotic time series, Chaos 28(12) (2018) 123118. [93] D.Y. Gu, Z.H. Liu, J. Li, Z.M. Xie, C.Y. Tao, Y.D. Wang, Intensification of chaotic mixing in a stirred tank with a punched rigid-flexible impeller and a chaotic motor, Chem. Eng. Process. Process. Intensif. 122(2017) 1-9. [94] M. Balcerzak, D. Pikunov, A. Dabrowski, The fastest, simplified method of Lyapunov exponents spectrum estimation for continuous-time dynamical systems, Nonlinear Dyn. 94(4) (2018) 3053-3065. [95] A. Dabrowski, Estimation of the largest Lyapunov exponent from the perturbation vector and its derivative dot product, Nonlinear Dyn. 67(1) (2012) 283-291. [96] A. Dabrowski, Estimation of the largest Lyapunov exponent-like (LLEL) stability measure parameter from the perturbation vector and its derivative dot product (part 2) experiment simulation, Nonlinear Dyn. 78(3) (2014) 1601-1608. [97] E.M.A.M. Mendes, E.G. Nepomuceno, A very simple method to calculate the (positive) largest Lyapunov exponent using interval extensions, Int. J. Bifurcat. Chaos 26(13) (2016) 1650226. [98] E.G. Nepomuceno, E.M.A.M. Mendes, On the analysis of pseudo-orbits of continuous chaotic nonlinear systems simulated using discretization schemes in a digital computer, Chaos Solitons Fractals 95(2017) 21-32. [99] E.G. Nepomuceno, S.A.M. Martins, M.J. Lacerda, E.M.A.M. Mendes, On the use of interval extensions to estimate the largest Lyapunov exponent from chaotic data, Math. Probl. Eng. 2018(2018) 6909151. [100] J. Pathak, Z.X. Lu, B.R. Hunt, M. Girvan, E. Ott, Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data, Chaos 27(12) (2017) 121102. [101] A.V. Makarenko, Deep learning algorithms for estimating Lyapunov exponents from observed time series in discrete dynamic systems, 14th International Conference" Stability and Oscillations of Nonlinear Control Systems" (Pyatnitskiy's Conference) (STAB), IEEE, Moscow, Russia, 2018. [102] M.L.C. Peixoto, E.G. Nepomuceno, S.A.M. Martins, M.J. Lacerda, Computation of the largest positive Lyapunov exponent using rounding mode and recursive least square algorithm, Chaos Solitons Fractals 112(2018) 36-43. [103] J.F. Gibson, J. Doyne Farmer, M. Casdagli, S. Eubank, An analytic approach to practical state space reconstruction, Phys. D Nonlinear Phenom. 57(1-2) (1992) 1-30. [104] M. Casdagli, S. Eubank, J.D. Farmer, J. Gibson, State space reconstruction in the presence of noise, Phys. D Nonlinear Phenom. 51(1-3) (1991) 52-98. [105] L.C. Uzal, G.L. Grinblat, P.F. Verdes, Optimal reconstruction of dynamical systems: A noise amplification approach, Phys. Rev. E 84(1 Pt 2) (2011) 016223. [106] C. Nichkawde, Optimal state-space reconstruction using derivatives on projected manifold, Phys. Rev. E 87(2) (2013) 022905. [107] S.K. Palit, S. Mukherjee, S. Banerjee, M.R.K. Ariffin, D.K. Bhattacharya, Some time-delay finding measures and attractor reconstruction, In: Applications of Chaos and Nonlinear Dynamics in Science and Engineering (Vol. 4), Springer, New York, 2015, pp 215-256. [108] K.H. Kraemer, G. Datseris, J. Kurths, I.Z. Kiss, J.L. Ocampo-Espindola, N. Marwan, A unified and automated approach to attractor reconstruction, New J. Phys. 23(3) (2021) 033017. [109] L.L. Melton, W.T. Malone, Fluid mechanics research and engineering application in non-Newtonian fluid systems, Soc. Petrol. Eng. J. 4(1) (1964) 56-66. [110] S. Gaskey, P. Vacus, R. David, J. Villermaux, J.C. Andre, A method for the study of turbulent mixing using fluorescence spectroscopy, Exp. Fluids 9(3) (1990) 137-147. [111] T. Dyakowski, R. Mann, S.J. Wang, P.J. Holden, Characterizing mixing processes using deterministic chaos theory, Inst. Chem. Eng. Symp. Ser. 140(1996) 131-142. [112] C. Letellier, L. Le Sceller, G. Gouesbet, F. Lusseyran, A. Kemoun, B. Izrar, Recovering deterministic behavior from experimental time series in mixing reactor, AIChE J. 43(9) (1997) 2194-2202. [113] L. Vicum, S. Ottiger, M. Mazzotti, L. Makowski, J. Baldyga, Multi-scale modeling of a reactive mixing process in a semibatch stirred tank, Chem. Eng. Sci. 59(8-9) (2004) 1767-1781. [114] C. Galletti, A. Paglianti, M. Yianneskis, Observations on the significance of instabilities turbulence and intermittent motions on fluid mixing processes in stirred reactors, Chem. Eng. Sci. 60(8-9) (2005) 2317-2331. [115] H. Unadkat, Investigation of turbulence modulation in solid-liquid suspensions using FPIV and micromixing experiments, Doctoral dissertation, Loughborough University, UK, 2010. [116] H.B. Meng, Z.Q. Liu, Y.F. Yu, J.H. Wu, Time-frequency analysis of Hilbert spectrum of pressure fluctuation time series in a Kenics static mixer based on empirical mode decomposition, Braz. J. Chem. Eng. 29(1) (2012) 167-182. [117] B.W. Lee, M.P. Dudukovic, Time-series analysis of optical probe measurements in gas-liquid stirred tanks, Chem. Eng. Sci. 116(2014) 623-634. [118] J. Fitschen, S. Hofmann, J. Wutz, A.V. Kameke, M. Hoffmann, T. Wucherpfennig, M. Schluter, Novel evaluation method to determine the local mixing time distribution in stirred tank reactors, Chem. Eng. Sci. 10(2021) 100098. [119] C. Yang, H.C. Lu, B. Wang, Z.L. Xu, B.Q. Liu, Flow regime identification using pressure fluctuation signals in an aerated vessel stirred, Chem. Eng. Sci. 280(2023) 119058. [120] Q.C. Chen, J. Deng, G.S. Luo, Micromixing performance and residence time distribution in a miniaturized magnetic reactor: Experimental investigation and machine learning modeling, Ind. Eng. Chem. Res. 62(8) (2023) 3577-3591. [121] F.Y. Liang, J.P. Valdes, S.B. Cheng, L. Kahouadji, S. Shin, J. Chergui, D. Juric, R. Arcucci, O.K. Matar, Liquid-liquid dispersion performance prediction and uncertainty quantification using recurrent neural networks, Ind. Eng. Chem. Res. 63(17) (2024) 7853-7875. [122] A.Z. Ivanovic, Z.D. Cupic, M.M. Jankovic, L.Z. Kolar-Anic, S.R. Anic. The chaotic sequences in the Bray-Liebhafsky reaction in an open reactor. Chem. Chem. Phys. 10(38) (2008) 5848-5858. [123] J.R. van Ommen, M.O. Coppens, C.M. van den Bleek, J.C. Schouten, Early warning of agglomeration in fluidized beds by attractor comparison, AIChE J. 46(11) (2000) 2183-2197. [124] C. Diks, V.Z. Wr, F. Takens, J. DeGoede, Detecting differences between delay vector distributions, Phys. Rev. E 53(3) (1996) 2169-2176. [125] T.L. Carroll, Attractor comparisons based on density, Chaos 25(1) (2015) 013111. [126] H.D.I. Abarbanel, Analysis of Observed Chaotic Data, Springer, New York, 1996. [127] M. Giona, F. Lentini, Functional reconstruction and local prediction of chaotic time series, Phys. Rev. A 44(6) (1991) 3496-3502. [128] D. Toker, F.T. Sommer, M. D’Esposito, A simple method for detecting chaos in nature, Commun. Biol. 3(2020) 11. [129] L. Zhang, K. Yang, M. Li, Q.T. Xiao, H. Wang, Enhancement of solid-liquid mixing state quality in a stirred tank by cascade chaotic rotating speed of main shaft, Powder Technol. 397(2022) 117020. [130] D. Toker, F. T. Sommer, M. D’Esposito, A simple method for detecting chaos in nature, Commun. Biol. 3(1) (2020) 11. [131] G.A. Gottwald, I. Melbourne, A new test for chaos in deterministic systems, Proc. R. Soc. Lond. A 460(2042) (2004) 603-611. [132] G.A. Gottwald, I. Melbourne, Testing for chaos in deterministic systems with noise, Phys. D Nonlinear Phenom. 212(1-2) (2005) 100-110. [133] B. Ashraf Ali, K. B, V.S.T. Madana, Experimental and computational investigation of solid suspension and gas dispersion in a stirred vessel, Phys. Fluids 34(11) (2022) 113318. [134] A. Rahoma, S. Imtiaz, S. Ahmed, Sparse principal component analysis using bootstrap method, Chem. Eng. Sci. 246(2021) 116890. [135] D.Y. Gu, M. Ye, X.M. Wang, Z.H. Liu, Numerical investigation on mixing characteristics of floating and sinking particles in a stirred tank with fractal impellers, J. Taiwan Inst. Chem. Eng. 116(2020) 51-61. [136] H. Bispo, J. Manzi, Equivalence between minimum entropy and exergy applied to continuous stirred-tank reactors, Chem. Eng. Technol. 46(4) (2023) 785-793. [137] X.Z. Zhao, H.A. Fan, G.B. Lin, Z.C. Fang, W.L. Yang, M. Li, J.H. Wang, X.Y. Lu, B.L. Li, K.J. Wu, J. Fu, Multi-objective optimization of radially stirred tank based on CFD and machine learning, AIChE J. 70(3) (2024) e18324. [138] L. Zhang, K.X. Yang, M. Li, Q. Xiao, H. Wang, Chaotic characterization of macromixing effect in a gas-liquid stirring system using modified 0-1 test, Can. J. Chem. Eng. 100(2) (2022) 261-275. [139] L. Zhang, K. Yang, M. Li, Q.T. Xiao, H. Wang, Experimental investigation on the uniformity optimization and chaos characterization of gas-liquid two-phase mixing process using statistical image analysis, Adv. Powder Technol. 32(5) (2021) 1627-1640. |
[1] | Kaixuan Gao, Xiwei Ke, Bingjun Du, Zhenchuan Wang, Yan Jin, Zhong Huang, Yanhong Li, Xuemin Liu. Simulation of gas-solid flow characteristics of the circulating fluidized bed boiler under pure-oxygen combustion conditions[J]. 中国化学工程学报, 2024, 70(6): 9-19. |
[2] | Weipeng Lu, Xuefeng Yan. Balanced multiple weighted linear discriminant analysis and its application to visual process monitoring[J]. 中国化学工程学报, 2021, 36(8): 128-137. |
[3] | Defeng He, Shiming Yu, Li Yu. Multi-objective nonlinear model predictive control through switching cost functions and its applications to chemical processes[J]. Chinese Journal of Chemical Engineering, 2015, 23(10): 1662-1669. |
[4] | Jie You, Qinmin Yang, Jiangang Lu, Youxian Sun. Identification of LPV Models with Non-uniformly Spaced Operating Points by Using Asymmetric Gaussian Weights[J]. , 2014, 22(7): 795-798. |
[5] | Bachir Daaou, Abdellah Mansouri, Mohamed Bouhamida, Mohammed Chenafa. Development of Linearizing Feedback Control with a Variable Structure Observer for Continuous Stirred Tank Reactors[J]. , 2012, 20(3): 567-571. |
[6] | 杜静静, 宋春跃, 李平. 基于MLD模型的CSTR建模和控制[J]. , 2007, 15(4): 533-538. |
[7] | 秦吉臣, 谢小莉, 曹贤武, 瞿金平. 聚碳酸酯连续熔融酯交换过程的反应闪蒸模拟[J]. , 2007, 15(1): 51-62. |
[8] | 淮秀兰, 刘登瀛, SHIGERU Koyama, BIDYUT Baran Saha. 对撞流干燥的实验与理论研究[J]. , 2003, 11(1): 42-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||