[1] A. Terada, K. Hibiya, N.G. Jun, S. Tsuneda, A. Hirata, Nitrogen removal characteristics and biofilm analysis of a membrane-aerated biofilm reactor applicable to high-strength nitrogenous wastewater treatment, J. Biosci. Bioeng. 95(2) (2003) 170-178. [2] H.Q. He, B.M. Wagner, A.L. Carlson, C. Yang, G.T. Daigger, Recent progress using membrane aerated biofilm reactors for wastewater treatment, Water Sci. Technol. 84(9) (2021) 2131-2157. [3] P. Desmond, K.T. Huisman, H. Sanawar, N.M. Farhat, J. Traber, E.O. Fridjonsson, M.L. Johns, H.C. Flemming, C. Picioreanu, J.S. Vrouwenvelder, Controlling the hydraulic resistance of membrane biofilms by engineering biofilm physical structure, Water Res. 210(2022) 118031. [4] K. Morinaga, K. Yoshida, K. Takahashi, N. Nomura, M. Toyofuku, Peculiarities of biofilm formation by Paracoccus denitrificans, Appl. Microbiol. Biotechnol. 104(6) (2020) 2427-2433. [5] S. Madan, R. Madan, A. Hussain, Advancement in biological wastewater treatment using hybrid moving bed biofilm reactor (MBBR): A review, Appl. Water Sci. 12(6) (2022) 141. [6] R. Nerenberg, The membrane-biofilm reactor (MBfR) as a counter-diffusional biofilm process, Curr. Opin. Biotechnol. 38(2016) 131-136. [7] H.L. Tian, H.M. Zhang, P. Li, L.Q. Sun, F.F. Hou, B.A. Li, Treatment of pharmaceutical wastewater for reuse by coupled membrane-aerated biofilm reactor (MABR) system, RSC Adv. 5(85) (2015) 69829-69838. [8] C. Pellicer-Nacher, B.F. Smets, Structure, composition, and strength of nitrifying membrane-aerated biofilms, Water Res. 57(2014) 151-161. [9] X.Q. Cheng, Z.X. Wang, J. Guo, J. Ma, L. Shao, Designing multifunctional coatings for cost-effectively sustainable water remediation, ACS Sustainable Chem. Eng. 6(2) (2018) 1881-1890. [10] B. Kim, P. Perez-Calleja, M. Li, R. Nerenberg, Effect of predation on the mechanical properties and detachment of MABR biofilms, Water Res. 186(2020) 116289. [11] T.G. Li, R.B. Bai, D.G. Ohandja, J.X. Liu, Biodegradation of acetonitrile by adapted biofilm in a membrane-aerated biofilm reactor, Biodegradation 20(4) (2009) 569-580. [12] H. Miura, Y. Kigo, A. Terada, Effectiveness of biofilm scouring in improving the carbon and nitrogen removal performance of membrane-aerated biofilm reactors installing novel high oxygen-transfer polyethylene membranes, J. Water Process. Eng. 59(2024) 104880. [13] M. Li, X.W. Cao, Z.Q. Wu, J.Y. Li, Y. Cui, J. Liu, B.A. Li, Insights on nitrogen and phosphorus removal mechanism in a single-stage Membrane Aeration Biofilm Reactor (MABR) dominated by denitrifying phosphorus removal coupled with anaerobic/aerobic denitrification, J. Water Process. Eng. 52(2023) 103583. [14] T.M. LaPara, A.C. Cole, J.W. Shanahan, M.J. Semmens, The effects of organic carbon, ammoniacal-nitrogen, and oxygen partial pressure on the stratification of membrane-aerated biofilms, J. Ind. Microbiol. Biotechnol. 33(4) (2006) 315-323. [15] A. Abdelfattah, R. Eltawab, M. Iqbal Hossain, X. Zhou, L. Cheng, Membrane aerated biofilm reactor system driven by pure oxygen for wastewater treatment, Bioresour. Technol. 393(2024) 130130. [16] P. Li, M. Li, Y.G. Zhang, H.M. Zhang, L.Q. Sun, B.A. Li, The treatment of surface water with enhanced membrane-aerated biofilm reactor (MABR), Chem. Eng. Sci. 144(2016) 267-274. [17] Y. Zhao, D. Liu, W. Huang, Y. Yang, M. Ji, L.D. Nghiem, Q.T. Trinh, N.H. Tran, Insights into biofilm carriers for biological wastewater treatment processes: Current state-of-the-art, challenges, and opportunities, Bioresour. Technol. 288(2019) 121619. [18] D.W. Lu, H. Bai, F.G. Kong, S.N. Liss, B.Q. Liao, Recent advances in membrane aerated biofilm reactors, Crit. Rev. Environ. Sci. Technol. 51(7) (2021) 649-703. [19] S. Yu, Y.T. Qin, Q. Zhao, M. Li, H.J. Yu, G.D. Kang, Y.M. Cao, Nafion-PTFE hollow fiber composite membranes for ammonia removal and recovery using an aqueous-organic membrane contactor, Sep. Purif. Technol. 271(2021) 118856. [20] Q.N. Zeng, Y. Wu, H.W. Zhang, N. Zhang, Comparison of effects of membrane materials on performance of membrane aerated biofilm reactor, CIESC J. 67(4) (2016) 1483-1489. [21] H. Zhang, W.J. Gong, W.C. Zeng, R. Chen, D.C. Lin, G.B. Li, H. Liang, Bacterial-algae biofilm enhance MABR adapting a wider COD/N ratios wastewater: Performance and mechanism, Sci. Total Environ. 781(2021) 146663. [22] Y. Li, K.S. Zhang, Pilot scale treatment of polluted surface waters using membrane-aerated biofilm reactor (MABR), Biotechnol. Biotechnol. Equip. 32(2) (2018) 376-386. [23] X. Mei, Z.W. Guo, J. Liu, S.Q. Bi, P.P. Li, Y. Wang, W.T. Shen, Y. Yang, Y.H. Wang, Y.Y. Xiao, X. Yang, Y. Liu, L. Zhao, Y.T. Wang, S. Hu, Treatment of formaldehyde wastewater by a membrane-aerated biofilm reactor (MABR): The degradation of formaldehyde in the presence of the cosubstrate methanol, Chem. Eng. J. 372(2019) 673-683. [24] M. Castrillo, R. Diez-Montero, A.L. Esteban-Garcia, I. Tejero, Mass transfer enhancement and improved nitrification in MABR through specific membrane configuration, Water Res. 152(2019) 1-11. [25] F.F. Hou, B.A. Li, M.H. Xing, Q. Wang, L. Hu, S.C. Wang, Surface modification of PVDF hollow fiber membrane and its application in membrane aerated biofilm reactor (MABR), Bioresour. Technol. 140(2013) 1-9. [26] A. Al Ashhab, A. Sweity, B. Bayramoglu, M. Herzberg, O. Gillor, Biofouling of reverse osmosis membranes: Effects of cleaning on biofilm microbial communities, membrane performance, and adherence of extracellular polymeric substances, Biofouling 33(5) (2017) 397-409. [27] H. Ravishankar, A. Nemeth, G. Massons, D. Puig, D. Zardoya, N. Carpi, P.N.L. Lens, B. Heffernan, Factors impacting simultaneous nitrification and denitrification in a membrane aerated biofilm reactor (MABR) system treating municipal wastewater, J. Environ. Chem. Eng. 10(5) (2022) 108120. [28] H.C. Yang, J.K. Pi, K.J. Liao, H. Huang, Q.Y. Wu, X.J. Huang, Z.K. Xu, Silica-decorated polypropylene microfiltration membranes with a mussel-inspired intermediate layer for oil-in-water emulsion separation, ACS Appl. Mater. Interfaces 6(15) (2014) 12566-12572. [29] X.B. Yang, L.L. Yan, Y.D. Wu, Y.Y. Liu, L. Shao, Biomimetic hydrophilization engineering on membrane surface for highly-efficient water purification, J. Membr. Sci. 589(2019) 117223. |