[1] P.G. Saffman, Vortex Dynamics, Cambridge University Press, Cambridge, 1992. [2] A. Spohn, M. Mory, E.J. Hopfinger, Observations of vortex breakdown in an open cylindrical container with a rotating bottom, Exp. Fluid 14(1) (1993) 70-77. [3] M. Piva, E. Meiburg, Steady axisymmetric flow in an open cylindrical container with a partially rotating bottom wall, Phys. Fluids 17(6) (2005) 063603. [4] I.V. Naumov, B.R. Sharifullin, V.N. Shtern, Vortex breakdown in the lower fluid of two-fluid swirling flow, Phys. Fluids 32(1) (2020) 014101. [5] V. Shtern, Cellular Flows: Topological Metamorphoses in Fluid Dynamics, Cambridge University Press, New York, 2018. [6] P. Yu, T.S. Lee, Y. Zeng, H.T. Low, Fluid dynamics of a micro-bioreactor for tissue engineering, Fluid Dynam. Mater. Process. 1(3) (2005) 235-246. [7] P. Yu, T.S. Lee, Y. Zeng, H.T. Low, A numerical analysis of effects of vortex breakdown on oxygen transport in a micro-bioreactor, Int. Commun. Heat Mass Tran. 35(9) (2008) 1141-1146. [8] L. Mununga, K. Hourigan, M.C. Thompson, T. Leweke, Confined flow vortex breakdown control using a small rotating disk, Phys. Fluids 16(12) (2004) 4750-4753. [9] J. Dusting, J. Sheridan, K. Hourigan, A fluid dynamics approach to bioreactor design for cell and tissue culture, Biotechnol. Bioeng. 94(6) (2006) 1196-1208. [10] P. Yu, T.S. Lee, Y. Zeng, H.T. Low, Effect of vortex breakdown on mass transfer in a cell culture bioreactor, Mod. Phys. Lett. B 19(28n29) (2005) 1543-1546. [11] H.U. Vogel, Experimentelle Ergebnisse uber die laminare Stromung in einem zylindrischen Gehause mit darin rotierender Scheibe, Max-Planck-Inst fur Stromungsforschung, Germany, 1968. [12] M. Piva, reportEstructuras de recirculacio en un contenedor cilindrico, Ph.D. Thesis, Universidad de Buenos Aires, Argentina, 2000. [13] I.V. Naumov, B.R. Sharifullin, M.A. Tsoy, V.N. Shtern, Dual vortex breakdown in a two-fluid confined flow, Phys. Fluids 32(6) (2020) 061706. [14] H.J. Lugt, M. Abboud, Axisymmetric vortex breakdown with and without temperature effects in a container with a rotating lid, J. Fluid Mech. 179(1987) 179-200. [15] J.M. Lopez, Axisymmetric vortex breakdown, Part 1. Confined swirling flow, J. Fluid Mech. 221(1990) 533-552. [16] G.L. Brown, J.M. Lopez, Axisymmetric vortex breakdown, Part 2. Physical mechanisms, J. Fluid Mech. 221(1990) 553-576. [17] M. Tsoy, S. Skripkin, I. Litvinov, Two spiral vortex breakdowns in confined swirling flow, Phys. Fluids 35(6) (2023) 061704. [18] S.J. Cogan, K. Ryan, G.J. Sheard, The effects of vortex breakdown bubbles on the mixing environment inside a base driven bioreactor, Appl. Math. Model. 35(4) (2011) 1628-1637. [19] L. Carrion, M.A. Herrada, V.N. Shtern, Topology changes in a water-oil swirling flow, Phys. Fluids 29(3) (2017) 032109. [20] I.V. Naumov, V.G. Glavny, B.R. Sharifullin, V.N. Shtern, Formation of a thin circulation layer in a two-fluid rotating flow, Phys. Rev. Fluids 4(5) (2019) 054702. [21] J. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press, Cambridge, 1999. [22] X.Y. Li, Y.F. Wang, G.Z. Yu, C. Yang, Z.S. Mao, A volume-amending method to improve mass conservation of level set approach for incompressible two-phase flows, Sci. China, Ser. B: Chem. 51(11) (2008) 1132-1140. [23] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, 1980. [24] S. Chen, B. Merriman, S. Osher, P. Smereka, A simple level set method for solving Stefan problems, J. Comput. Phys. 135(1) (1997) 8-29. [25] C. Yang, Z.S. Mao, An improved level set approach to the simulation of drop and bubble motion, Chin. J. Chem. Eng. 21(3) (2002) 263-272. [26] S.J.Y. Lee, H. An, P.C. Wang, J.G. Hang, S.C.M. Yu, Effects of liquid viscosity on bubble formation characteristics in a typical membrane bioreactor, Int. Commun. Heat Mass Tran. 120(2021) 105000. [27] M. Saavedra del Oso, M. Mauricio-Iglesias, A. Hospido, Evaluation and optimization of the environmental performance of PHA downstream processing, Chem. Eng. J. 412(2021) 127687. [28] L. Nino, R. Gelves, J. Solsvik, Viscous effects on gas-liquid hydrodynamics for bubble size determinations in different Newtonian and non-Newtonian fluids using a CFD-PBM model, Chem. Eng. Sci. 282(2023) 119324. [29] F. Raymond, J.M. Rosant, A numerical and experimental study of the terminal velocity and shape of bubbles in viscous liquids, Chem. Eng. Sci. 55(5) (2000) 943-955. |