[1] W.M. Zhong, C. Qiao, X. Peng, Z. Li, C. Fan, F. Qian, Operation optimization of hydrocracking process based on Kriging surrogate model, Contr. Eng. Pract. 85 (2019) 34-40. [2] F.A.N. Fernandes, U.M. Teles, Modeling and optimization of Fischer-Tropsch products hydrocracking, Fuel Process. Technol. 88 (2) (2007) 207-214. [3] D.H. Oh, D. Adams, N.D. Vo, D.Q. Gbadago, C.H. Lee, M. Oh, Actor-critic reinforcement learning to estimate the optimal operating conditions of the hydrocracking process, Comput. Chem. Eng. 149 (2021) 107280. [4] N.I. Najafabadi, G. Chattopadhyaya, K.J. Smith, Experimental evidence for hydrogen spillover during hydrocracking in a membrane reactor, Appl. Catal. A Gen. 235 (1-2) (2002) 47-60. [5] K. Basak, M. Sau, U. Manna, R.P. Verma, Industrial hydrocracker model based on novel continuum lumping approach for optimization in petroleum refinery, Catal. Today 98 (1-2) (2004) 253-264. [6] H. Harode, M. Ramteke, Axial dispersion modeling of industrial hydrocracking unit and its multiobjective optimization, Chem. Eng. Res. Des. 121 (2017) 57-68. [7] A.M. Zhou, B.Y. Qu, H. Li, S.Z. Zhao, P.N. Suganthan, Q.F. Zhang, Multiobjective evolutionary algorithms: A survey of the state of the art, Swarm Evol. Comput. 1 (1) (2011) 32-49. [8] A. Trivedi, D. Srinivasan, K. Sanyal, A. Ghosh, A survey of multiobjective evolutionary algorithms based on decomposition, IEEE Trans. Evol. Comput. 21 (3) (2017) 440-462. [9] R. Cheng, C. He, Y.C. Jin, X. Yao, Model-based evolutionary algorithms: A short survey, Complex Intell. Syst. 4 (4) (2018) 283-292. [10] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182-197. [11] E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization, Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems. Proceedings of the EUROGEN'2001. Athens. Greece, 2001. [12] K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints, IEEE Trans. Evol. Comput. 18 (4) (2014) 577-601. [13] H.D. Wang, Q.F. Zhang, L.C. Jiao, X. Yao, Regularity model for noisy multiobjective optimization, IEEE Trans. Cybern. 46 (9) (2016) 1997-2009. [14] F.W. Ge, K. Li, Y. Han, Solving interval many-objective optimization problems by combination of NSGA-III and a local fruit fly optimization algorithm, Appl. Soft Comput. 114 (2022) 108096. [15] V.K. Maurya, S.J. Nanda, Time-varying multi-objective smart home appliances scheduling using fuzzy adaptive dynamic SPEA2 algorithm, Eng. Appl. Artif. Intell. 121 (2023) 105944. [16] Y. Liu, G. Yu, J. Cheng, C. Jiang, X.Z. Wang, L.B. Ma, Transferable preference learning assist multi-objective decision analysis for hydrocracking, In:2023 5th International Conference on Data-driven Optimization of Complex Systems (DOCS). Tianjin, China. IEEE, 2023. [17] B. Chachuat, B. Srinivasan, D. Bonvin, Adaptation strategies for real-time optimization, Comput. Chem. Eng. 33 (10) (2009) 1557-1567. [18] X. Zhang, Y.Y. Zou, S.Y. Li, S.H. Xu, A weighted auto regressive LSTM based approach for chemical processes modeling, Neurocomputing 367 (2019) 64-74. [19] K. Deb, R.B. Agrawal, Simulated binary crossover for continuous search space, Complex Syst. 9 (1994) 1-34. [20] M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo, Swarm robotics: A review from the swarm engineering perspective, Swarm Intell. 7 (1) (2013) 1-41. [21] C. Igel, N. Hansen, S. Roth, Covariance matrix adaptation for multi-objective optimization, Evol. Comput. 15 (1) (2007) 1-28. [22] Y.L. Li, Z.H. Zhan, Y.J. Gong, W.N. Chen, J. Zhang, Y. Li, Differential evolution with an evolution path: A DEEP evolutionary algorithm, IEEE Trans. Cybern. 45 (9) (2015) 1798-1810. [23] Z. Li, K.Y. Wang, C.X. Xue, H.T. Li, Y. Todo, Z.Y. Lei, S.C. Gao, Differential evolution with ring sub-population architecture for optimization, Knowl. Based Syst. 305 (2024) 112590. [24] X.L. Han, Y. Xue, Z.H. Wang, Y. Zhang, A. Muravev, M. Gabbouj, SaDENAS: A self-adaptive differential evolution algorithm for neural architecture search, Swarm Evol. Comput. 91 (2024) 101736. [25] D. Cong, C.J. Shi, Y.F. Cui, Y.M. Han, Z.Q. Geng, Novel competing evolutionary membrane algorithm based on multiple reference points for multi-objective optimization of ethylene cracking processes, Chemom. Intell. Lab. Syst. 217 (2021) 104389. [26] X.T. Wang, Z.Q. Geng, L.C. Chen, Y.M. Han, Improved dragonfly optimization algorithm based on quantum behavior for multi-objective optimization of ethylene cracking furnace, Swarm Evol. Comput. 88 (2024) 101607. [27] D. Jiang, T. Peng, Z.Q. Bu, J.Y. Fu, G. Lin, W.Q. Zhang, Optimization and benefit analysis of the supply chain for sweet sorghum bioenergy production in China, Innov. Energy 1 (3) (2024) 100038. [28] W.J. Song, W. Du, C. Fan, W.M. Zhong, F. Qian, A novel path-based reproduction operator for multi-objective optimization, Swarm Evol. Comput. 59 (2020) 100741. [29] N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strategies, Evol. Comput. 9 (2) (2001) 159-195. [30] S.Y. Ivanov, A.K. Ray, Multiobjective optimization of industrial petroleum processing units using genetic algorithms, Procedia Chem. 10 (2014) 7-14. [31] N. Bhutani, G.P. Rangaiah, A.K. Ray, First-principles, data-based, and hybrid modeling and optimization of an industrial hydrocracking unit, Ind. Eng. Chem. Res. 45 (23) (2006) 7807-7816. [32] H. Zhou, J.X. Lu, Z.K. Cao, J. Shi, M. Pan, W. Li, Q.Y. Jiang, Modeling and optimization of an industrial hydrocracking unit to improve the yield of diesel or kerosene, Fuel 90 (12) (2011) 3521-3530. [33] S. Sadighi, A. Ahmad, An optimisation approach for increasing the profit of a commercial VGO hydrocracking process, Can. J. Chem. Eng. 91 (6) (2013) 1077-1091. [34] N. Bhutani, A.K. Ray, G.P. Rangaiah, Modeling, simulation, and multi-objective optimization of an industrial hydrocracking unit, Ind. Eng. Chem. Res. 45 (4) (2006) 1354-1372. [35] Z.F. Chen, Y.R. Zhou, X.R. Zhao, Y. Xiang, J.H. Wang, A historical solutions based evolution operator for decomposition-based many-objective optimization, Swarm Evol. Comput. 41 (2018) 167-189. [36] W.X. Wang, K.S. Li, X.Z. Tao, F.H. Gu, An improved MOEA/D algorithm with an adaptive evolutionary strategy, Inf. Sci. 539 (2020) 1-15. [37] Z.Y. Yan, Y.Y. Tan, B. Wang, L. Liu, H.X. Zhang, A dual-operator strategy for a multiobjective evolutionary algorithm based on decomposition, Knowl. Based Syst. 240 (2022) 108141. [38] S. Das, P.N. Suganthan, Differential evolution: A survey of the state-of-the-art, IEEE Trans. Evol. Comput. 15 (1) (2010) 4-31. [39] A. Elkilani, M. Fahim, Six-lump hydrocracking model for maximizing aviation turbine kerosene, petrol sci technol 33 (2) (2015) 237-244. [40] C.J. Calderon, J. Ancheyta, Modeling, simulation, and parametric sensitivity analysis of a commercial slurry-phase reactor for heavy oil hydrocracking, Fuel 244 (2019) 258-268. [41] W. Song, W. Zhong, M. Yang, W. Du, F.J.C.e.t. Qian, A new lumped kinetic model of an industrial hydrocracking process, Chem. Eng. Trans. 61 (2017) 673-678. [42] Q.Y. Li, Q.Y. Jiang, Z.K. Cao, L.J. Ai, Y.Q. Zhang, Modeling and simulation for the hydrocracking reactor, 2008 27th Chinese Control Conference. July 16-18, 2008, Kunming. IEEE, (2008) 204-208. [43] N. Hansen, S.D. Muller, P. Koumoutsakos, Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES), Evol. Comput. 11 (1) (2003) 1-18. [44] X. Tong, B. Yuan, B. Li, Model complex control CMA-ES, Swarm Evol. Comput. 50 (2019) 100558. [45] B. Karmakar, A. Kumar, R. Mallipeddi, D.G. Lee, CMA-ES with exponential based multiplicative covariance matrix adaptation for global optimization, Swarm Evol. Comput. 79 (2023) 101296. [46] O.S. Ajani, A. Kumar, R. Mallipeddi, Covariance matrix adaptation evolution strategy based on correlated evolution paths with application to reinforcement learning, Expert Syst. Appl. 246 (2024) 123289. [47] N. Ozcelikkan, G. Tuzkaya, C. Alabas-Uslu, B. Sennaroglu, A multi-objective agile project planning model and a comparative meta-heuristic approach, Inf. Softw. Technol. 151 (2022) 107023. [48] Y. Tian, R. Cheng, X.Y. Zhang, Y.C. Jin, Techniques for accelerating multi-objective evolutionary algorithms in PlatEMO. In:2020 IEEE Congress on Evolutionary Computation (CEC). Glasgow, United Kingdom. IEEE, 2020. [49] Y. Tian, X.Y. Zhang, R. Cheng, Y.C. Jin, A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric, In:2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver, BC, Canada. IEEE, 2016. |