[1] S.B. Li, J.X. Zhang, H.L. An, G.R. Wang, X.Q. Zhao, Y.J. Wang, NiO-MnO2/Nb2O5-TiO2 catalyzed reaction integration of butanal self-condensation and successive hydrogenation and its kinetics, J. Chem. Technol. Biotechnol. 96 (6) (2021) 1553-1560. [2] N. Liang, X.L. Zhang, H.L. An, X.Q. Zhao, Y.J. Wang, Direct synthesis of 2-ethylhexanol via n-butanal aldol condensation-hydrogenation reaction integration over a Ni/Ce-Al2O3 bifunctional catalyst, Green Chem. 17 (5) (2015) 2959-2972. [3] Y. Li, X.H. Liu, H.L. An, X.Q. Zhao, Y.J. Wang, One-pot sequential aldol condensation and hydrogenation of n-butyraldehyde to 2-ethylhexanol, Ind. Eng. Chem. Res. 55 (22) (2016) 6293-6299. [4] J.H. Clark, V. Budarin, F.E.I. Deswarte, J.J.E. Hardy, F.M. Kerton, A.J. Hunt, R. Luque, D.J. MacQuarrie, K. Milkowski, A. Rodriguez, O. Samuel, S.J. Tavener, R.J. White, A.J. Wilson, Green chemistry and the biorefinery: a partnership for a sustainable future, Green Chem. 8 (10) (2006) 853-860. [5] J. He, Q. Qiang, S.M. Liu, K. Song, X.W. Zhou, J. Guo, B. Zhang, C.Z. Li, Upgrading of biomass-derived furanic compounds into high-quality fuels involving aldol condensation strategy, Fuel 306 (2021) 121765. [6] J. Cueto, D. de la Calle, M. del Mar Alonso-Doncel, E.A. Giner, R.A. Garcia-Munoz, D.P. Serrano, Enhanced production of jet fuel precursors via furfural/cyclopentanone aldol condensation by synergistic pairing TiO2 with nano-ZSM-5 zeolite, Bioresour. Technol. 418 (2025) 131877. [7] S. Miao, H.L. An, X.Q. Zhao, Y.J. Wang, Catalytic performance of Cu-Mg-Al in the one-step synthesis of 2-ethylhexanol from n-butyraldehyde, React. Kinet. Mech. Catal. 125 (2) (2018) 773-788. [8] Y. Zhang, The study of new catalytic technology of self-condensation of butanal to 2-ethylhexenal, Master Thesis, Shanghai Normal University: Shanghai, China, 2010. [9] H. Lou, H. Sun, J. Duan, Y. Ding, J. Han, W. Li, X. Zheng, A process method for preparing 2-ethyl-2-hexenal via n-butanal self-condensation catalyzed by MgO catalyst, CN 102070419A (2011). [10] X. Liu, L. Wu, H. An, X. Zhao, Y. Wang, Aldol self-condensation of n-butyraldehyde to 2-ethyl-2-hexenal catalyzed by KF-γ-Al2O3, Acta Pet. Sin., (Pet. Process. Sect.) 31 (2015) 1332-1337. [11] Y. Watanabe, K. Sawada, M. Hayashi, A green method for the self-aldol condensation of aldehydes using lysine, Green Chem. 12 (3) (2010) 384-386. [12] T. Jose, N. Sudheesh, R.S. Shukla, Amino functionalized chitosan as a catalyst for selective solvent-free self-condensation of linear aldehydes, J. Mol. Catal. A Chem. 333 (1-2) (2010) 158-166. [13] Y. Li, n-Butyraldehyde self-condensation catalyzed by chitosan; Master Thesis, Hebei University of Technology,Tianjin, China, 2017. [14] X.X. Han, Y. Li, H.L. An, X.Q. Zhao, Y.J. Wang, Chitosan-catalyzed n-butyraldehyde self-condensation reaction mechanism and kinetics, Chin. J. Chem. Eng. 27 (10) (2019) 2447-2454. [15] J. Zhang, Y. Li, B. Hu, H. An, X. Zhao, Y. Wang, Catalytic performance of chitosan for n-butyraldehyde aldol self-condensation, J. Chem. Eng. Chin. Univ. 2020, 34(5): 1189-1195. [16] A.G. Thome, N. Osakoo, J. Wittayakun, F. Roessner, Base modified organic mesoporous silicas, their characterization and application in the aldol reaction of n-butanal, Mol. Catal. 531 (2022) 112670. [17] S. Erdmann, A.G. Thome, J. Wittayakun, F. Roessner, Kinetic investigation of the aldol condensation of n-butanal on mesoporous and macro-mesoporous heterogeneous catalysts, Mol. Catal. 559 (2024) 114026. [18] I.V. Kozhevnikov, Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions, Chem. Rev. 98 (1) (1998) 171-198. [19] J.R. Li, Z. Yang, S.W. Li, Q.P. Jin, J.S. Zhao, Review on oxidative desulfurization of fuel by supported heteropolyacid catalysts, J. Ind. Eng. Chem. 82 (2020) 1-16. [20] C.N. Chen, X.H. Liu, H.L. An, X.Q. Zhao, Y.J. Wang, N-Butyraldehyde aldol self-condensation catalyzed by H4SiW12O40/SiO2, CIESC J. 65 (6) (2014) 2106-2112. (in Chinese). [21] N.E. Musko, J.D. Grunwaldt, Heterogeneously catalysed aldol reactions in supercritical carbon dioxide as innovative and non-flammable reaction medium, Top. Catal. 54 (16) (2011) 1115. [22] B. Li, n-Butyraldehyde/n-valeraldehyde self-condensation catalyzted by MIL-100(Fe) and MIL-100(Fe)-encapsulated H4SiW12O40; Master Thesis, Hebei University of Technology: Tianjin, China, 2017. [23] Y. Shi, B. Li, H. An, X. Zhao, Y. Wang, Preparation of H4SiW12O40@MIL-100 (Fe) and its catalytic performance in the self-condensation of n-butyraldehyde, Acta Pet. Sin., (Pet. Process. Sect.) 35 (2019) 660-668. [24] H. Tsuji, F. Yagi, H. Hattori, H. Kita, Self-condensation of n-butyraldehyde over solid base catalysts, J. Catal. 148 (2) (1994) 759-770. [25] X. Zhao, N. Liang, H. An, Y. Wang, A process method for preparing 2-ethyl-2-hexenal via n-butanal self-condensation catalyzed by solid acid catalyst. ZL 201210507185.6 (2015). [26] N. Liang, Research on catalysts for n-butanal aldol condensation and for n-butanal aldol condensation-hydrogenation reaction integration; Master Thesis, Hebei University of Technology: Tianjin, China, 2014. [27] C. Xiong, Reaction kinetics of n-butanal aldol condensation over Ce-Al2O3 catalyst and its catalytic stability; Master Thesis, Hebei University of Technology: Tianjin, China, 2016. [28] C. Xiong, N. Liang, H.L. An, X.Q. Zhao, Y.J. Wang, N-Butyraldehyde self-condensation catalyzed by Ce-modified γ-Al2O3, RSC Adv. 5 (125) (2015) 103523-103533. [29] X. Liu, Solid catalysts for n-butanal aldol condensation and for one-pot sequential aldol condensation-hydrogenation to 2-ethylhexenanol; Master Thesis, Hebei University of Technology: Tianjin, China, 2015. [30] X.H. Liu, Y. Wang, H.L. An, X.Q. Zhao, Y.J. Wang, Synthesis of 2-ethyl-2-hexenal via n-butanal self-condensation catalyzed by La-Al2O3, CIESC J. 67 (5) (2016) 1884-1891.(in Chinese). [31] D.L. Sun, Y. Yamada, S. Sato, Amorphous SiO2 catalyst for vapor-phase aldol condensation of butanal, Appl. Catal. A Gen. 570 (2019) 113-119. [32] X. He, H. An, X. Zhao, Y. Wang, Effects of crystal forms of TiO2 on n-butanal self-condensation, J. Chem. Eng. Chin. Univ. 31 (2017) 1103-1112. [33] Y. Zhu, X. He, H. An, Y. Geng, X. Zhao, Y. Wang, Optimization of gas phase n-butyraldehyde self-condensation catalyzed by TiO2 in a fixed bed reactor, J. Chem. Eng. Chin. Univ. 32 (2018) 1338-1344. [34] X. He, Catalytic performance of TiO2 for n-butanal self-condensation; Master Thesis, Hebei University of Technology: Tianjin, China, 2017. [35] D.L. Sun, S. Moriya, Y. Yamada, S. Sato, Vapor-phase self-aldol condensation of butanal over Ag-modified TiO2, Appl. Catal. A Gen. 524 (2016) 8-16. [36] P. Moggi, G. Albanesi, Methylolation and aldol condensation in gas phase by heterogeneous catalysis, React. Kinet. Catal. Lett. 22 (1) (1983) 247-251. [37] P. Moggi, G. Albanesi, Gas phase aldol condensation of n-butyraldehyde to 2-ethylhexenal, Appl. Catal. 68 (1) (1991) 285-300. [38] T. Yasuhiko, N. Toshio, Production of 2-ethylhexenal, JP Patent S61167634, 1986. [39] H.E. Swift, J.E. Bozik, F.E. Massoth, Vapor-phase aldol condensation of n-butyraldehyde using a reduced tin-silica catalyst, J. Catal. 15 (4) (1969) 407-416. [40] R.L. Vekariya, A review of ionic liquids: applications towards catalytic organic transformations, J. Mol. Liq. 227 (2017) 44-60. [41] H.B. Xing, T. Wang, Z.H. Zhou, Y.Y. Dai, The sulfonic acid-functionalized ionic liquids with pyridinium cations: Acidities and their acidity-catalytic activity relationships, J. Mol. Catal. A Chem. 264 (1-2) (2007) 53-59. [42] X. Zhang, Environmentally friendly catalysts for n-butayraldehyde aldol condensation and for the reaction integration of the condensation-hydrogenation; Master Thesis, Hebei University of Technology: Tianjin, China, 2015. [43] X.L. Zhang, H.L. An, H.Q. Zhang, X.Q. Zhao, Y.J. Wang, n-butyraldehyde self-condensation catalyzed by sulfonic acid functionalized ionic liquids, Ind. Eng. Chem. Res. 53 (43) (2014) 16707-16714. [44] X. Zhao, C. Chen, H. An, Y. Wang, A process method for preparing 2-ethyl-2-hexenal via n-butanal self-condensation catalyzed by acidic ionic liquid. ZL 201210203372.5 (2014). [45] B.J. Arena, J.S. Holmgren, 2-Eehyl-2-hexenal by aldol condensation of butyraldehyde in a continuous process, US Patent 5144089 (1992). [46] A.A. Schutz, Process for aldol condensation, US Patent 5055620 (1991). [47] R. Teissier, M. Fournier, Catalyst for obtaining β-hydroxy and/or α,β-unsaturated carbonyl compounds, US Patent 6271171 (2001). [48] G.J. Kelly, Aldol condensation, US Patent 0044558A1 (2001). [49] W.Q. Shen, G.A. Tompsett, R. Xing, W. Curtis Conner, G.W. Huber, Vapor phase butanal self-condensation over unsupported and supported alkaline earth metal oxides, J. Catal. 286 (2012) 248-259. [50] E.J. Rode, P.E. Gee, L.N. Marquez, T. Uemura, M. Bazargani, Aldol condensation of butanal over alkali metal zeolites, Catal. Lett. 9 (1) (1991) 103-113. [51] D. Sankaranarayanapillai Shylesh, D. Hanna, J. Gomes, S. Krishna, D.C.G. Canlas, P. Martin Head-Gordon, P.A.T. Bell, Tailoring the cooperative acid-base effects in silica-supported amine catalysts: applications in the continuous gas-phase self-condensation of n-butanal, ChemCatChem 6 (5) (2014) 1283-1290. [52] S. Shylesh, D. Hanna, J. Gomes, C.G. Canlas, M. Head-Gordon, A.T. Bell, The role of hydroxyl group acidity on the activity of silica-supported secondary amines for the self-condensation of n-butanal, ChemSusChem 8 (3) (2015) 466-472. [53] M.C. Hou, F. Li, A.Z. Jia, Y.Y. Wang, Y.J. Wang, One-pot synthesis of biomass-derived porous carbon-based composites as an efficient acid-base bifunctional catalyst for self-condensation of n-butyraldehyde, React. Chem. Eng. 7 (6) (2022) 1358-1367. [54] X. He, L. Wu, H. An, X. Zhao, Y. Wang, Influence of preparation condition on the catalytic performance of KF/MgO-Al2O3 for n-butanal self-condensation, Spec. Petrochem. 34 (2017) 1-6. [55] G. Zheng, X. He, H. An, X. Zhao, Y. Wang, TiO2-catalyzed n-butyraldehyde self-condensation reaction mechanism, Chem. React. Eng. Technol. 35 (2019) 306-314. [56] H. Idriss, K.S. Kim, M.A. Barteau, Carbon-Carbon bond formation via aldolization of acetaldehyde on single crystal and polycrystalline TiO2 surfaces, J. Catal. 139 (1) (1993) 119-133. |