[1] L. Jeffry, M.Y. Ong, S. Nomanbhay, M. Mofijur, M. Mubashir, P.L. Show, Greenhouse gases utilization: a review, Fuel 301 (2021) 121017. [2] L.L. Sun, Q. Liu, H.J. Chen, H. Yu, L. Li, L.T. Li, Y.Z. Li, C.D. Adenutsi, Source-sink matching and cost analysis of offshore carbon capture, utilization, and storage in China, Energy 291 (2024) 130137. [3] C. Vogt, E. Groeneveld, G. Kamsma, M. Nachtegaal, L. Lu, C.J. Kiely, P.H. Berben, F. Meirer, B.M. Weckhuysen, Unravelling structure sensitivity in CO2 hydrogenation over nickel, Nat. Catal. 1 (2018) 127-134. [4] H.L. Yi, Q.Q. Xue, S.L. Lu, J.J. Wu, Y.J. Wang, G.S. Luo, Effect of pore structure on Ni/Al2O3 microsphere catalysts for enhanced CO2 methanation, Fuel 315 (2022) 123262. [5] R.X. Zhang, H.H. Chen, Y.B. Mu, S. Chansai, X.X. Ou, C. Hardacre, Y.L. Jiao, X.L. Fan, Structured Ni@NaA zeolite supported on silicon carbide foam catalysts for catalytic carbon dioxide methanation, AIChE. J. 66 (11) (2020) e17007. [6] A.B. Shirsath, M.L. Schulte, B. Kreitz, S. Tischer, J.D. Grunwaldt, O. Deutschmann, Spatially-resolved investigation of CO2 methanation over Ni/γ-Al2O3 and Ni3.2Fe/γ-Al2O3 catalysts in a packed-bed reactor, Chem. Eng. J. 469 (2023) 143847. [7] S. Musab Ahmed, J. Ren, I. Ullah, H. Lou, N. Xu, Z. Abbasi, Z. Wang, Ni-based catalysts for CO2 methanation: exploring the support role in structure-activity relationships, ChemSusChem 17 (9) (2024) e202400310. [8] A. Bustinza, M. Frias, Y.F. Liu, E. Garcia-Bordeje, Mono- and bimetallic metal catalysts based on Ni and Ru supported on alumina-coated monoliths for CO2 methanation, Catal. Sci. Technol. 10 (12) (2020) 4061-4071. [9] R.M. Heck, S. Gulati, R.J. Farrauto, The application of monoliths for gas phase catalytic reactions, Chem. Eng. J. 82 (1-3) (2001) 149-156. [10] A. Vita, C. Italiano, L. Pino, P. Frontera, M. Ferraro, V. Antonucci, Activity and stability of powder and monolith-coated Ni/GDC catalysts for CO2 methanation, Appl. Catal. B Environ. 226 (2018) 384-395. [11] H.L. Huynh, W.M. Tucho, Q. Shen, Z.X. Yu, Bed packing configuration and hot-spot utilization for low-temperature CO2 methanation on monolithic reactor, Chem. Eng. J. 428 (2022) 131106. [12] A. Catarina Faria, C.V. Miguel, A.E. Rodrigues, L.M. Madeira, Modeling and simulation of a steam-selective membrane reactor for enhanced CO2 methanation, Ind. Eng. Chem. Res. 59 (37) (2020) 16170-16184. [13] B.J. Pang, P. Zhang, Z.W. Cao, S. Wang, J.J. Tong, X.F. Zhu, W.S. Yang, Mixed oxygen ionic-carbonate ionic conductor membrane reactor for coupling CO2 capture with in situ methanation, AIChE. J. 69 (2) (2023) e17919. [14] R. Currie, M.W. Fowler, D.S.A. Simakov, Catalytic membrane reactor for CO2 hydrogenation using renewable streams: Model-based feasibility analysis, Chem. Eng. J. 372 (2019) 1240-1252. [15] T.A. Nijhuis, A.E.W. Beers, T. Vergunst, I. Hoek, F. Kapteijn, J.A. Moulijn, Preparation of monolithic catalysts, Catal. Rev. 43 (4) (2001) 345-380. [16] C. Janke, M.S. Duyar, M. Hoskins, R. Farrauto, Catalytic and adsorption studies for the hydrogenation of CO2 to methane, Appl. Catal. B Environ. 152 (2014) 184-191. [17] H.L. Huynh, W.M. Tucho, Z.X. Yu, Structured NiFe catalysts derived from in situ grown layered double hydroxides on ceramic monolith for CO2 methanation, Green Energy Environ. 5 (4) (2020) 423-432. [18] J.Y. Ahn, S.W. Chang, S.M. Lee, S.S. Kim, W.J. Chung, J.C. Lee, Y.J. Cho, K.S. Shin, D.H. Moon, D.D. Nguyen, Developing Ni-based honeycomb-type catalysts using different binary oxide-supported species for synergistically enhanced CO2 methanation activity, Fuel 250 (2019) 277-284. [19] C. Fukuhara, K. Hayakawa, Y. Suzuki, W. Kawasaki, R. Watanabe, A novel nickel-based structured catalyst for CO2 methanation: a honeycomb-type Ni/CeO2 catalyst to transform greenhouse gas into useful resources, Appl. Catal. A Gen. 532 (2017) 12-18. [20] A. Ricca, L. Truda, V. Palma, Study of the role of chemical support and structured carrier on the CO2 methanation reaction, Chem. Eng. J. 377 (2019) 120461. [21] V. Middelkoop, A. Vamvakeros, D. de Wit, S.D.M. Jacques, S. Danaci, C. Jacquot, Y. de Vos, D. Matras, S.W.T. Price, A.M. Beale, 3D printed Ni/Al2O3 based catalysts for CO2 methanation - a comparative and operando XRD-CT study, J. CO2 Util. 33 (2019) 478-487. [22] N. Engelbrecht, S. Chiuta, R.C. Everson, H.W.J.P. Neomagus, D.G. Bessarabov, Experimentation and CFD modelling of a microchannel reactor for carbon dioxide methanation, Chem. Eng. J. 313 (2017) 847-857. [23] S. Ratchahat, M. Sudoh, Y. Suzuki, W. Kawasaki, R. Watanabe, C. Fukuhara, Development of a powerful CO2 methanation process using a structured Ni/CeO2 catalyst, J. CO2 Util. 24 (2018) 210-219. [24] P. Summa, M. Motak, P. Da Costa, Optimization of an open-cell foam-based Ni-Mg-Al catalyst for enhanced CO2 hydrogenation to methane, Catalysts 14 (1) (2024) 11. [25] C. Italiano, G. Drago Ferrante, L. Pino, M. Lagana, M. Ferraro, V. Antonucci, A. Vita, Silicon carbide and alumina open-cell foams activated by Ni/CeO2-ZrO2 catalyst for CO2 methanation in a heat-exchanger reactor, Chem. Eng. J. 434 (2022) 134685. [26] Y.K. Li, Q.F. Zhang, R.J. Chai, G.F. Zhao, Y. Liu, Y. Lu, F.H. Cao, Ni-Al2O3/Ni-foam catalyst with enhanced heat transfer for hydrogenation of CO2 to methane, AIChE. J. 61 (12) (2015) 4323-4331. [27] Y.Q. Chen, X.R. Wu, Q. Liu, M.S. He, H.C. Bai, Ni-foam structured Ni-phyllosilicate ensemble as an efficient monolithic catalyst for CO2 methanation, Catal. Lett. 152 (9) (2022) 2738-2744. [28] S. Cimino, E.M. Cepollaro, L. Lisi, S. Fasolin, M. Musiani, L. Vazquez-Gomez, Ru/Ce/Ni metal foams as structured catalysts for the methanation of CO2, Catalysts 11 (1) (2021) 13. [29] S. Danaci, L. Protasova, J. Lefevere, L. Bedel, R. Guilet, P. Marty, Efficient CO2 methanation over Ni/Al2O3 coated structured catalysts, Catal. Today 273 (2016) 234-243. [30] S. Danaci, L. Protasova, F. Snijkers, W. Bouwen, A. Bengaouer, P. Marty, Innovative 3D-manufacture of structured copper supports post-coated with catalytic material for CO2 methanation, Chem. Eng. Process. Process. Intensif. 127 (2018) 168-177. [31] S. Hosseini, H. Moghaddas, S. Masoudi Soltani, S. Kheawhom, Technological applications of honeycomb monoliths in environmental processes: a review, Process. Saf. Environ. Prot. 133 (2020) 286-300. [32] C. Fukuhara, Y. Makiyama, K. Yamamoto, R. Watanabe, A combination of electroless plating and Sol-gel methods as a novel technique for preparing a honeycomb-type-structured catalyst, Chem. Lett. 42 (4) (2013) 416-418. [33] N. Engelbrecht, R.C. Everson, D. Bessarabov, G. Kolb, Microchannel reactor heat-exchangers: a review of design strategies for the effective thermal coupling of gas phase reactions, Chem. Eng. Process. Process. Intensif. 157 (2020) 108164. [34] I. Fuentes, J.P. Mmbaga, R.E. Hayes, F. Gracia, Potential of microreactors for heat transfer efficient CO2 methanation, Chem. Eng. Sci. 280 (2023) 119047. [35] A.K. Raghu, N.S. Kaisare, Analysis of the autothermal operability of the Sabatier reaction in a heat-recirculating microreactor using CFD, React. Chem. Eng. 4 (10) (2019) 1823-1833. [36] C. Chatzilias, E. Martino, A. Katsaounis, C.G. Vayenas, Electrochemical promotion of CO2 hydrogenation in a monolithic electrochemically promoted reactor (MEPR), Appl. Catal. B Environ. 284 (2021) 119695. [37] L. Kiewidt, J. Thoming, Pareto-optimal design and assessment of monolithic sponges as catalyst carriers for exothermic reactions, Chem. Eng. J. 359 (2019) 496-504. [38] C.Y. Chaparro-Garnica, E. Bailon-Garcia, A. Davo-Quinonero, P. Da Costa, D. Lozano-Castello, A. Bueno-Lopez, High performance tunable catalysts prepared by using 3D printing, Materials 14 (17) (2021) 5017. [39] M.V. Twigg, J.T. Richardson, Fundamentals and applications of structured ceramic foam catalysts, Ind. Eng. Chem. Res. 46 (12) (2007) 4166-4177. [40] V. Shumilov, A. Kirilin, A. Tokarev, S. Boden, M. Schubert, U. Hampel, L. Hupa, T. Salmi, D.Y. Murzin, Preparation of γ-Al2O3/α-Al2O3 ceramic foams as catalyst carriers via the replica technique, Catal. Today 383 (2022) 64-73. [41] L.Y. Wang, L.Q. An, J. Zhao, S. Shimai, X.J. Mao, J. Zhang, J. Liu, S.W. Wang, High-strength porous alumina ceramics prepared from stable wet foams, J. Adv. Ceram. 10 (4) (2021) 852-859. [42] C. Sinn, G.R. Pesch, J. Thoming, L. Kiewidt, Coupled conjugate heat transfer and heat production in open-cell ceramic foams investigated using CFD, Int. J. Heat Mass Transf. 139 (2019) 600-612. [43] P. Nguyen, C. Pham, Innovative porous SiC-based materials: from nanoscopic understandings to tunable carriers serving catalytic needs, Appl. Catal. A Gen. 391 (1-2) (2011) 443-454. [44] M. Frey, E. David, A.C. Roger, Optimization of structured cellular foam-based catalysts for low-temperature carbon dioxide methanation in a platelet milli-reactor, Comptes Rendus Chim. 18 (3) (2015) 283-292. [45] Y.L. Wei, J. Ji, F.X. Liang, Y.H. Du, Z. Pang, H.L. Wang, Q.G. Li, G.P. Shi, Z. Wang, Pd/P-CeO2-Al2O3 coatings supported on foam ceramic with controlled morphology for high-performance CO2 methanation, Ceram. Int. 49 (22) (2023) 35071-35081. [46] A. Hassan, I.A. Alnaser, A review of different manufacturing methods of metallic foams, ACS Omega 9 (6) (2024) 6280-6295. [47] M. Frey, T. Romero, A.C. Roger, D. Edouard, Open cell foam catalysts for CO2 methanation: Presentation of coating procedures and in situ exothermicity reaction study by infrared thermography, Catal. Today 273 (2016) 83-90. [48] L.G. Dou, C.J. Yan, L.S. Zhong, D. Zhang, J.Y. Zhang, X. Li, L.Y. Xiao, Enhancing CO2 methanation over a metal foam structured catalyst by electric internal heating, Chem. Commun. 56 (2) (2019) 205-208. [49] I.G.I. Iwakiri, A.C. Faria, C.V. Miguel, L.M. Madeira, Split feed strategy for low-permselective membrane reactors: a simulation study for enhancing CO2 methanation, Chem. Eng. Process. Process. Intensif. 163 (2021) 108360. [50] S. Escorihuela, C. Cerda-Moreno, F. Weigelt, S. Remiro-Buenamanana, S. Escolastico, A. Tena, S. Shishatskiy, T. Brinkmann, A. Chica, J.M. Serra, Intensification of catalytic CO2 methanation mediated by in situ water removal through a high-temperature polymeric thin-film composite membrane, J. CO2 Util. 55 (2022) 101813. [51] E.Y. Kim, M.H. Hyeon, H.W. Hwang, J.Y. Lee, S.K. Kim, Y.S. Bae, S.Y. Moon, Selective in situ water removal by polybenzoxazole hollow fiber membrane for enhanced CO2 methanation, Chem. Eng. J. 487 (2024) 150206. [52] S. Pati, J. Ashok, N. Dewangan, T.J. Chen, S. Kawi, Ultra-thin (~1 μm) Pd-Cu membrane reactor for coupling CO2 hydrogenation and propane dehydrogenation applications, J. Membr. Sci. 595 (2020) 117496. [53] L.Y. Wei, H. Azad, W. Haije, H. Grenman, W. de Jong, Pure methane from CO2 hydrogenation using a sorption enhanced process with catalyst/zeolite bifunctional materials, Appl. Catal. B Environ. 297 (2021) 120399. [54] M.P. Rohde, G. Schaub, S. Khajavi, J.C. Jansen, F. Kapteijn, Fischer-Tropsch synthesis with in situ H2O removal-Directions of membrane development, Microporous Mesoporous Mater. 115 (1-2) (2008) 123-136. [55] N. Wang, Y. Liu, A. Huang, J. Caro, Supported SOD membrane with steam selectivity by a two-step repeated hydrothermal synthesis, Microporous Mesoporous Mater. 192 (2014) 8-13. [56] R.J. Hou, C. Fong, B.D. Freeman, M.R. Hill, Z.L. Xie, Current status and advances in membrane technology for carbon capture, Sep. Purif. Technol. 300 (2022) 121863. [57] A.I. Tsiotsias, E. Harkou, N.D. Charisiou, V. Sebastian, D.R. Naikwadi, B. van der Linden, A. Bansode, D. Stoian, G. Manos, A. Constantinou, M.A. Goula, Very low Ru loadings boosting performance of Ni-based dual-function materials during the integrated CO2 capture and methanation process, J. Energy Chem. 102 (2025) 309-328. [58] Z.G. Wang, J. Xu, S. Pati, T.J. Chen, Y.Z. Deng, N. Dewangan, L. Meng, J.Y.S. Lin, S. Kawi, High H2 permeable SAPO-34 hollow fiber membrane for high temperature propane dehydrogenation application, AIChE. J. 66 (9) (2020) e16278. [59] Z.F. Bian, H.C. Xia, W.Q. Zhong, B. Jiang, Y. Yu, Z.G. Wang, K.W. Yu, CFD simulation on hydrogen-membrane reactor integrating cyclohexane dehydrogenation and CO2 methanation reactions: a conceptual study, Energy Convers. Manag. 235 (2021) 113989. [60] M.M. Alinejad, K. Ghasemzadeh, A. Iulianelli, S. Liguori, M. Ghahremani, CFD development of a silica membrane reactor during HI decomposition reaction coupling with CO2 methanation at sulfur-iodine cycle, Nanomaterials 12 (5) (2022) 824. |