[1] D.H. Xu, H.Q. Li, W.J. Bao, C.Y. Wang, A new process of extracting alumina from high-alumina coal fly ash in NH4HSO4 +H2SO4 mixed solution, Hydrometallurgy 165(2016) 336-344. [2] G. Zhao, Distribution Pattern of High-aluminium Coal in Hengcheng Mining Area of Ningxia and Analysis of Comprehensive Utilization Benefit. Research on Green and Efficient Mining Technology for Coal Mine, Safety, 2017, pp. 101-107, https://link.cnki.net/doi/10.26914/c.cnkihy.2017.011966. [3] G. Zhao, Preliminary study on characteristies of high aluminium coal resourcesin hongduanzi mining area of Ningxia, Coal Proc. & Comp. Util. 11(2023) 100-104. [4] C.Y. Wu, H.F. Yu, H.F. Zhang, Extraction of aluminum by pressure acid-leaching method from coal fly ash, Trans. Nonferrous Metals Soc. China 22(9) (2012) 2282-2288. [5] Z.S. Zhao, L. Cui, Y.X. Guo, J.M. Gao, H.Q. Li, F.Q. Cheng, A stepwise separation process for selective recovery of gallium from hydrochloric acid leach liquor of coal fly ash, Sep. Purif. Technol. 265(2021) 118455. [6] S.L. Shi, Q.F. Liu, J.M. Sun, Z.G. Wu, B. Sun, Enrichment features and causes of boehmite in high-aluminium partings of junger coalfield, Coal Eng. 46(2014) 116-118. [7] Y.W. Wang, Z.Q. Wang, J.J. Huang, Y.T. Fang, Catalytic gasification activity of Na2CO3 and comparison with K2CO3 for a high-aluminum coal char, Energy Fuel. 29(11) (2015) 6988-6998. [8] H.X. Xiao, F.H. Li, Q.R. Liu, S.H. Ji, H.L. Fan, M.L. Xu, Q.Q. Guo, M.J. Ma, X.W. Ma, Modification of ash fusion behavior of coal with high ash fusion temperature by red mud addition, Fuel 192(2017) 121-127. [9] H.L. Fan, F.H. Li, Ash fusion temperature regulation mechanism of Xiangyang coal by coal blending, J. Therm. Anal. Calorim. 139(3) (2020) 2055-2066. [10] B.Q. Dai, X.J. Wu, J. Zhao, L. Zhang, Xinjiang lignite ash slagging and flow under the weak reducing environment at high temperatureseslag viscosity and its variation with ash type and addition of clay, Fuel 245(2019) 438-446. [11] L.X. Kong, J. Bai, W. Li, Viscosity-temperature property of coal ash slag at the condition of entrained flow gasification: a review, Fuel Process. Technol. 215(2021) 106751. [12] J. Heo, J.H. Park, Interfacial reactions between magnesia refractory and electric arc furnace (EAF) slag with use of direct reduced iron (DRI) as raw material, Ceram. Int. 48(4) (2022) 4526-4538. [13] L.M. Zhang, J.T. Wei, J.F. Wang, Y.H. Bai, X.D. Song, W.G. Su, P. Lv, G.X. Nai, G.S. Yu, Deep insight into the ash fusibility and viscosity fluctuation behavior during co-gasification of coal and indirect coal liquefaction residue, Fuel 305(2021) 121620. [14] Y.B. Wang, L.Y. Li, Q.W. An, H.Z. Tan, P. Li, J.H. Peng, Effect of different additives on ash fusion characteristic and mineral phase transformation of iron-rich Zhundong coal, Fuel 307(2022) 121841. [15] J. Bai, W. Li, Z.Q. Bai, Effects of mineral matter and coal blending on gasification, Energy Fuel. 25(3) (2011) 1127-1131. [16] G.W. Bryant, G.J. Browning, H. Emanuel, S.K. Gupta, R.P. Gupta, J.A. Lucas, T.F. Wall, The fusibility of blended coal ash, Energy Fuel. 14(2) (2000) 316-325. [17] D.C. Wang, Q.F. Liang, X. Gong, H.F. Liu, X. Liu, Influence of coal blending on ash fusion property and viscosity, Fuel 189(2017) 15-22. [18] H. Lu, J. Bai, S.V. Vassilev, L.X. Kong, H.Z. Li, Z.Q. Bai, W. Li, The crystallization behavior of anorthite in coal ash slag under gasification condition, Chem. Eng. J. 445(2022) 136683. [19] Y. Jiang, X.C. Lin, K. Ideta, H. Takebe, J. Miyawaki, S.H. Yoon, I. Mochida, Microstructural transformations of two representative slags at high temperatures and effects on the viscosity, J. Ind. Eng. Chem. 20(4) (2014) 1338-1345. [20] R. Zhang, Y. Min, Y. Wang, X. Zhao, C.J. Liu, Structural evolution of molten slag during the early stage of basic oxygen steelmaking, ISIJ Int. 60(2) (2020) 212-219. [21] S.F. Ma, K.J. Li, J.L. Zhang, C.H. Jiang, Z.S. Bi, M.M. Sun, Z.M. Wang, H.T. Li, The effects of CaO and FeO on the structure and properties of aluminosilicate system: a molecular dynamics study, J. Mol. Liq. 325(2021) 115106. [22] Z.F. Ge, L.X. Kong, J. Bai, X.D. Chen, C. He, H.Z. Li, Z.Q. Bai, P. Li, W. Li, Effect of CaO/Na2O on slag viscosity behavior under entrained flow gasification conditions, Fuel Process. Technol. 181(2018) 352-360. [23] Z.F. Ge, L.X. Kong, J. Bai, H.L. Zhao, X. Cao, H.Z. Li, Z.Q. Bai, B. Meyer, S. Guhl, P. Li, W. Li, Effect of CaO/Fe2O3 ratio on slag viscosity behavior under entrained flow gasification conditions, Fuel 258(2019) 116129. [24] X. Liu, G.S. Yu, J.L. Xu, Q.F. Liang, H.F. Liu, Viscosity fluctuation behaviors of coal ash slags with high content of calcium and low content of silicon, Fuel Process. Technol. 158(2017) 115-122. [25] Z. Huang, Y. Li, J. Zhao, Z. Zhao, J. Zhou, K. Cen, Ash fusion regulation mechanism of coal with low melting point and different ash composition, J. Fuel Chem. Technol. 40(2012) 1038-1043. [26] F.H. Li, M. Li, H.L. Fan, Y.T. Fang, Understanding ash fusion and viscosity variation from coal blending based on mineral interaction, Energy Fuel. 32(1) (2018) 132-141. [27] F.H. Li, Y.T. Fang, Ash fusion characteristics of a high aluminum coal and its modification, Energy Fuel. 30(4) (2016) 2925-2931. [28] H.X. Xiao, F.H. Li, Y.F. Wang, Regulation of ash fusion behaviors for high aluminum coal by high calcium coal addition, Asia Pac. J. Chem. Eng. 15(1) (2020) e2404. [29] X. Pardal, F. Brunet, T. Charpentier, I. Pochard, A. Nonat, 27Al and 29Si solidstate NMR characterization of calcium-aluminosilicate-hydrate, Inorg. Chem. 51(3) (2012) 1827-1836. [30] E. Gambuzzi, A. Pedone, M.C. Menziani, F. Angeli, D. Caurant, T. Charpentier, Probing silicon and aluminium chemical environments in silicate and aluminosilicate glasses by solid state NMR spectroscopy and accurate firstprinciples calculations, Geochem. Cosmochim. Acta 125(2014) 170-185. [31] Z.W. Chen, H. Wang, Y.Q. Sun, L.L. Liu, X.D. Wang, Insight into the relationship between viscosity and structure of CaO-SiO2-MgO-Al2O3 molten slags, Metall. Mater. Trans. B 50(6) (2019) 2930-2941. [32] C. Le Losq, D.R. Neuville, P. Florian, G.S. Henderson, D. Massiot, The role of Al3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts, Geochem. Cosmochim. Acta 126(2014) 495-517. [33] K. Zheng, Z.T. Zhang, F.H. Yang, S. Sridhar, Molecular dynamics study of the structural properties of calcium aluminosilicate slags with varying Al2O3/SiO2 ratios, ISIJ Int. 52(3) (2012) 342-349. [34] W.W. Xuan, Y.Q. Zhang, Exploration of the amphoteric transition of Al2O3 on melt structure and viscosity of silicate slag, Ceram. Int. 49(15) (2023) 25815-25822. [35] A. Kondratiev, E. Jak, A quasi-chemical viscosity model for fully liquid slags in the Al2O3-CaO-FeO-SiO2 system, Metall. Mater. Trans. B 36(5) (2005) 623-638. [36] W. Zhao, F.H. Li, M.J. Ma, C.Y. Zhao, Y. Wang, Z.Q. Yang, X.J. Zhang, Y.T. Fang, Investigation on variation mechanisms of ash fusion and viscosity of high calcium-iron coal by coal blending, Fuel 334(2023) 126663. [37] J.R. Qiu, F. Li, Y. Zheng, C.G. Zheng, H.C. Zhou, The influences of mineral behaviour on blended coal ash fusion characteristics, Fuel 78(8) (1999) 963-969. [38] B.L. Xia, F.C. Jiao, H.X. Li, Y.H. Hu, J.P. Liu, Y.C. Zhang, T. Liu, L.R. Mao, Relation between the viscosity and electrical conductivity of molten slag for coal gasification and their dependence on SiO2 content, Chem. Eng. Res. Des. 207(2024) 142-150. [39] C. He, J. Bai, L.X. Kong, J. Xu, S. Guhl, X.M. Li, Z.F. Ge, X. Cao, Z.Q. Bai, W. Li, Effects of atmosphere on the oxidation state of iron and viscosity behavior of coal ash slag, Fuel 243(2019) 41-51. [40] M. Capone, J.K. Kroschwitz, M. Howe-Grant, Encyclopedia of Chemical Technology, Wiley, New York, 1997. [41] Y.J. Wei, H.X. Li, N. Yamada, A. Sato, Y. Ninomiya, K. Honma, T. Tanosaki, A microscopic study of the precipitation of metallic iron in slag from iron-rich coal during high temperature gasification, Fuel 103(2013) 101-110. [42] X.B. Qi, G.L. Song, W.J. Song, S.B. Yang, Q.G. Lu, Effects of wall temperature on slagging and ash deposition of Zhundong coal during circulating fluidized bed gasification, Appl. Therm. Eng. 106(2016) 1127-1135. [43] X. Dai, J. Bai, D.T. Li, P. Yuan, T.G. Yan, L.X. Kong, W. Li, Experimental and theoretical investigation on relationship between structures of coal ash and its fusibility for Al2O3-SiO2-CaO-FeO system, J. Fuel Chem. Technol. 47(6) (2019) 641-648. [44] T.S. Kim, J.H. Park, Thermodynamics of iron redox equilibria and viscositystructure relationship of CaOAl2O3 FetO melts, J. Non-Cryst. Solids 542(2020) 120089. [45] C.Y. Zhao, F.H. Li, M.J. Ma, Y. Li, W. Zhao, X.J. Zhang, Y.T. Fang, Modification of ash fusion behavior of high ash fusion temperature (AFT) coal by textile dyeing sludge addition and its mechanism, J. Fuel Chem. Technol. 50(6) (2022) 703-713. [46] Y.H. Qin, M.M. Feng, Z.B. Zhao, S.V. Vassilev, J. Feng, C.G. Vassileva, W.Y. Li, Effect of biomass ash addition on coal ash fusion process under CO2 atmosphere, Fuel 231(2018) 417-426. [47] S.P. Bhattacharya, M. Harttig, Control of agglomeration and defluidization burning high-alkali, high-sulfur lignites in a small fluidized bed CombustorEffect of additive size and type, and the role of calcium, Energy Fuel. 17(4) (2003) 1014-1021. [48] F.H. Li, Z.Q. Yang, Y. Li, G.P. Han, H.L. Fan, X.F. Liu, M.L. Xu, M.X. Guo, Y.T. Fang, The effects of Na2O/K2O flux on ash fusion characteristics for high silicon-aluminum coal in entrained-flow bed gasification, Energy 282(2023) 128603. [49] C. Ma, N. Skoglund, M. Carlborg, M. Brostrom, Viscosity of molten CaOK 2OSiO2 woody biomass ash slags in relation to structural characteristics from molecular dynamics simulation, Chem. Eng. Sci. 215(2020) 115464. [50] F.H. Li, M.J. Zhou, W. zhao, X.F. Liu, Z.Q. Yang, H.L. Fan, G.P. Han, J.G. Li, M.L. Xu, Y.T. Fang, Ash fusion behavior modification mechanisms of high-calcium coal by coal blending and its ash viscosity predication, Energy 288(2024) 129829. [51] N. Bost, S. Duraipandian, G. Guimbretiere, J. Poirier, Raman spectra of syn- thetic and natural mullite, Vib. Spectrosc. 82(2016) 50-52. [52] M.A. Bouhifd, G. Gruener, B.O. Mysen, P. Richet, Premelting and calcium mobility in gehlenite (Ca2Al2SiO7) and pseudowollastonite (CaSiO3), Phys. Chem. Miner. 29(10) (2002) 655-662. [53] A. Zolotarev, S. Krivovichev, T. Panikorovskii, V. Gurzhiy, V. Bocharov, M. Rassomakhin, Dmisteinbergite, CaAl2Si2O8, a metastable polymorph of anorthite: crystal-structure and Raman spectroscopic study of the holotype specimen, Minerals 9(10) (2019) 570. [54] R.Z. Xu, Z. Wang, Influence of Al2O3 on viscous behavior and structure characteristic of TiO2-bearing molten slags, Ceram. Int. 50(13) (2024) 24016-24024. [55] Z.J. Wang, I. Sohn, Influence of the Al2O3/SiO2 mass ratio and gas composition on the viscous behavior and structure of Cr-containing stainless steel slags, Ceram. Int. 46(1) (2020) 903-912. [56] J.L. Li, K. Chou, Q.F. Shu, Structure and viscosity of CaOeAl2O3eB2O3 based mould fluxes with varying CaO/Al2O3 mass ratios, ISIJ Int. 60(1) (2020) 51-57. [57] L. Zhang, W.L. Wang, L. Zhang, J. Zeng, X. Gao, A comparison study on the dissolution mechanism of Al2O3 inclusion on fluorine-bearing and fluorinefree molten mold fluxes, Ceram. Int. 49(16) (2023) 27176-27184. [58] Z.G. Pang, X.D. Xing, Q.G. Xue, J.S. Wang, H.B. Zuo, Influence of Na2O on the thermodynamics properties, viscosity, and structure of CaOeSiO2eMgOeAl2O3eBaOeNa2O slag, Ceram. Int. 48(16) (2022) 23357-23364. [59] Z.J. Wang, I. Sohn, Effect of substituting CaO with BaO on the viscosity and structure of CaO-BaO-SiO2-MgO-Al2O3 slags, J. Am. Ceram. Soc. 101(9) (2018) 4285-4296. |