[1] S. Guo, X.Y. Xiong, D.Y. Che, H.P. Liu, B.Z. Sun, Effects of sludge pyrolysis temperature and atmosphere on characteristics of biochar and gaseous products, Korean J. Chem. Eng. 38 (1) (2021) 55-63. [2] S.R. Naqvi, R. Tariq, M. Shahbaz, M. Naqvi, M. Aslam, Z. Khan, H. MacKey, G. McKay, T. Al-Ansari, Recent developments on sewage sludge pyrolysis and its kinetics: Resources recovery, thermogravimetric platforms, and innovative prospects, Comput. Chem. Eng. 150 (2021) 107325. [3] P. Feng, Y.X. Zhang, Z.Q. Xu, The effect of sludge from coal to oil process on the stability of coal/sludge water slurries, Energy Sources Part A Recovery Util. Environ. Eff. 40 (13) (2018) 1621-1628. [4] K. Jayaraman, I. Gokalp, Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge, Energy Convers. Manag. 89 (2015) 83-91. [5] R. Toczylowska-Maminska, Limits and perspectives of pulp and paper industry wastewater treatment-A review, Renew. Sustain. Energy Rev. 78 (2017) 764-772. [6] Y. Liang, D.H. Xu, P. Feng, B.T. Hao, Y. Guo, S.Z. Wang, Municipal sewage sludge incineration and its air pollution control, J. Clean. Prod. 295 (2021) 126456. [7] Z.Y. Jin, F.M. Chang, F.L. Meng, C.P. Wang, Y. Meng, X.J. Liu, J. Wu, J.E. Zuo, K.J. Wang, Sustainable pyrolytic sludge-char preparation on improvement of closed-loop sewage sludge treatment: Characterization and combined in situ application, Chemosphere 184 (2017) 1043-1053. [8] S.Q. Tang, S.C. Tian, C.M. Zheng, Z.T. Zhang, Effect of calcium hydroxide on the pyrolysis behavior of sewage sludge: reaction characteristics and kinetics, Energy Fuels 31 (5) (2017) 5079-5087. [9] S. Shahraki, M. Miri, M. Motahari-Nezhad, Experimental analysis of pyrolysis of sewage sludge, Energy Sources Part A Recovery Util. Environ. Eff. 40 (17) (2018) 2037-2043. [10] H.L. Chiang, K.H. Lin, H.H. Chiu, Exhaust characteristics during the pyrolysis of ZnCl2 immersed biosludge, J. Hazard. Mater. 229-230 (2012) 233-244. [11] M. Inguanzo, A. Dominguez, J.A. Menendez, C.G. Blanco, J.J. Pis, On the pyrolysis of sewage sludge: the influence of pyrolysis conditions on solid, liquid and gas fractions, J. Anal. Appl. Pyrolysis 63 (1) (2002) 209-222. [12] F.M. Chang, C.P. Wang, Q.B. Wang, J.W. Jia, K.J. Wang, Pilot-scale pyrolysis experiment of municipal sludge and operational effectiveness evaluation, Energy Sources Part A Recovery Util. Environ. Eff. 38 (4) (2016) 472-477. [13] Y.N. Chun, S.C. Kim, K. Yoshikawa, Pyrolysis gasification of dried sewage sludge in a combined screw and rotary kiln gasifier, Appl. Energy 88 (4) (2011) 1105-1112. [14] M.A. Lillo-Rodenas, A. Ros, E. Fuente, M.A. Montes-Moran, M.J. Martin, A. Linares-Solano, Further insights into the activation process of sewage sludge-based precursors by alkaline hydroxides, Chem. Eng. J. 142 (2) (2008) 168-174. [15] W.H. Li, Q.Y. Yue, B.Y. Gao, X.J. Wang, Y.F. Qi, Y.Q. Zhao, Y.J. Li, Preparation of sludge-based activated carbon made from paper mill sewage sludge by steam activation for dye wastewater treatment, Desalination 278 (1-3) (2011) 179-185. [16] F. Rozada, M. Otero, A. Moran, A.I. Garcia, Activated carbons from sewage sludge and discarded tyres: production and optimization, J. Hazard. Mater. 124 (1-3) (2005) 181-191. [17] E. Raymundo-Pinero, P. Azais, T. Cacciaguerra, D. Cazorla-Amoros, A. Linares-Solano, F. Beguin, KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation, Carbon 43 (4) (2005) 786-795. [18] H. Chen, D.Z. Chen, L. Hong, Influences of activation agent impregnated sewage sludge pyrolysis on emission characteristics of volatile combustion and De-NOx performance of activated char, Appl. Energy 156 (2015) 767-775. [19] F. Li, B. Yan, Y.P. Zhang, L.H. Zhang, T. Lei, Effect of activator on the structure and desulphurization efficiency of sludge-activated carbon, Environ. Technol. 35 (17-20) (2014) 2575-2581. [20] Y.H. Li, F.M. Chang, B. Huang, Y.P. Song, H.Y. Zhao, K.J. Wang, Activated carbon preparation from pyrolysis char of sewage sludge and its adsorption performance for organic compounds in sewage, Fuel 266 (2020) 117053. [21] U. Mahapatra, A.K. Manna, A. Chatterjee, A critical evaluation of conventional kinetic and isotherm modeling for adsorptive removal of hexavalent chromium and methylene blue by natural rubber sludge-derived activated carbon and commercial activated carbon, Bioresour. Technol. 343 (2022) 126135. [22] M. Saberi, P. Rouhi, Extension of the Brunauer-Emmett-Teller (BET) model for sorption of gas mixtures on the solid substances, Fluid Phase Equilib. 534 (2021) 112968. [23] H. Chen, D.Z. Chen, Y.Y. Hu, Y.H. Feng, X.H. Dai, Preparation of activated sewage sludge char for low temperature De-NOx and its CO emission inhibition, Chemosphere 251 (2020) 126330. [24] G. Cheng, Y.Z. Li, L.M. Sun, S.Y. Luo, G.Z. Kyzas, J. Fu, Residue char derived from microwave-assisted pyrolysis of sludge as adsorbent for the removal of methylene blue from aqueous solutions, Processes 8 (8) (2020) 979. [25] H.P. Yang, R. Yan, H.P. Chen, D.H. Lee, C.G. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel 86 (12-13) (2007) 1781-1788. [26] X. Li, G.Z. Wang, W.G. Li, Pyrolysis characteristics and kinetics of the preparation process of sludge-based activated carbon by ZnCl2 activation method, Journal of Harbin Institute of Technology. 20(006) (2013) 29-36. [27] M. Wilk, A. Magdziarz, I. Kalemba, Characterisation of renewable fuels' torrefaction process with different instrumental techniques, Energy 87 (2015) 259-269. [28] M. Olivares-Marin, C. Fernandez-Gonzalez, A. Macias-Garcia, V. Gomez-Serrano, Preparation of activated carbon from cherry stones by chemical activation with ZnCl2, Appl. Surf. Sci. 252 (17) (2006) 5967-5971. [29] P.R. Dores-Silva, M.D. Landgraf, M.O.O. Rezende, Chemical differentiation of domestic sewage sludge and cattle manure stabilized by microbioreators: study by pyrolysis coupled to gas chromatography coupled to mass spectroscopy, J. Braz. Chem. Soc. (2015). [30] J. Meng, L.L. Wang, X.M. Liu, J.J. Wu, P.C. Brookes, J.M. Xu, Physicochemical properties of biochar produced from aerobically composted swine manure and its potential use as an environmental amendment, Bioresour. Technol. 142 (2013) 641-646. [31] Y.W. Zhu, Y.J. Wang, T.Y. Wang, H.Q. Liu, H.Y. Liu, M.R. Zang, One-step preparation of coal-based magnetic activated carbon with hierarchically porous structure and easy magnetic separation capability for adsorption applications, J. Magn. Magn. Mater. 569 (2023) 170480. [32] B. Royer, N.F. Cardoso, E.C. Lima, J.C. Vaghetti, N.M. Simon, T. Calvete, R.C. Veses, Applications of Brazilian pine-fruit shell in natural and carbonized forms as adsorbents to removal of methylene blue from aqueous solutions: kinetic and equilibrium study, J. Hazard. Mater. 164 (2-3) (2009) 1213-1222. [33] D.D. Li, J.Q. Li, Q.B. Gu, S.X. Song, C.S. Peng, Co-influence of the pore size of adsorbents and the structure of adsorbates on adsorption of dyes, Desalin. Water Treat. 57 (31) (2016) 14686-14695. [34] Q. Li, Y.J. Wang, R.T. Zhu, J.C. Wu, W.J. Zhang, H.Z. Lu, Rapid preparation of porous carbon by Flash Joule heating from bituminous coal and its adsorption mechanism of methylene blue, Colloids Surf. A Physicochem. Eng. Aspects 682 (2024) 132900. [35] G.Q. Gong, S.J. Liang, Y.M. Shi, Z.Y. Wang, Z.L. Li, R.N. Li, S. Lu, Y.J. Zhang, Preparation of microporous carbon materials using residual coal from oxidative degradation of lignite as the carbon source and the mechanism and dynamics of its methyl orange adsorption, Colloids Surf. A Physicochem. Eng. Aspects 636 (2022) 128138. [36] P. Kowalczyk, A.P. Terzyk, P.A. Gauden, G. Rychlicki, Numerical analysis of the Horvath-kawazoe equation: the adsorption of nitrogen, argon, benzene, carbon tetrachloride and sulphur hexafluoride, Adsorpt. Sci. Technol. 20 (3) (2002) 295-305. [37] W. Plazinski, W. Rudzinski, A. Plazinska, Theoretical models of sorption kinetics including a surface reaction mechanism: a review, Adv. Colloid Interface Sci. 152 (1-2) (2009) 2-13. |