[1] O. Mahian, M.R. Mirzaie, A. Kasaeian, S.H. Mousavi, Exergy analysis in combined heat and power systems: a review, Energy Convers. Manag. 226 (2020) 113467. [2] Y.T. Ling, S.M. Xia, M.Q. Cao, K.R. He, M.K. Lim, A. Sukumar, H.Y. Yi, X.D. Qian, Carbon emissions in China’s thermal electricity and heating industry: an input-output structural decomposition analysis, J. Clean. Prod. 329 (2021) 129608. [3] K.X. He, T. Wang, F.K. Zhang, X. Jin, Anomaly detection and early warning via a novel multiblock-based method with applications to thermal power plants, Measurement 193 (2022) 110979. [4] H. Qian, B. Sun, Y.J. Guo, Z.L. Yang, J. Ling, W. Feng, A parallel deep learning algorithm with applications in process monitoring and fault prediction, Comput. Electr. Eng. 99 (2022) 107724. [5] P. Hundi, R. Shahsavari, Comparative studies among machine learning models for performance estimation and health monitoring of thermal power plants, Appl. Energy 265 (2020) 114775. [6] R. Laubscher, Time-series forecasting of coal-fired power plant reheater metal temperatures using encoder-decoder recurrent neural networks, Energy 189 (2019) 116187. [7] L.F. Yin, J.X. Xie, Multi-feature-scale fusion temporal convolution networks for metal temperature forecasting of ultra-supercritical coal-fired power plant reheater tubes, Energy 238 (2022) 121657. [8] J.H. Chen, H.K. Li, D.R. Sheng, W. Li, A hybrid data-driven modeling method on sensor condition monitoring and fault diagnosis for power plants, Int. J. Electr. Power Energy Syst. 71 (2015) 274-284. [9] J. Yu, J. Yoo, J. Jang, J.H. Park, S. Kim, A novel plugged tube detection and identification approach for final super heater in thermal power plant using principal component analysis, Energy 126 (2017) 404-418. [10] K. Rostek, L. Morytko, A. Jankowska, Early detection and prediction of leaks in fluidized-bed boilers using artificial neural networks, Energy 89 (2015) 914-923. [11] G.L. Li, Y.J. Li, C.Y. Fang, J. Su, H.T. Wang, S.D. Sun, G.L. Zhang, J.X. Shi, Research on fault diagnosis of supercharged boiler with limited data based on few-shot learning, Energy 281 (2023) 128286. [12] N. Indrawan, L.J. Shadle, R.W. Breault, R. Panday, U.K. Chitnis, Data analytics for leak detection in a subcritical boiler, Energy 220 (2021) 119667. [13] Y.X. Dong, Y. Yao, J.S. Zeng, S.H. Luo, C.H. Gao, Isolation of overtemperature fault in an industrial boiler using tree-structured sparsity-based reconstruction, Ind. Eng. Chem. Res. 61 (19) (2022) 6575-6586. [14] M.L. Bai, X.S. Yang, J.F. Liu, J. Liu, D.R. Yu, Convolutional neural network-based deep transfer learning for fault detection of gas turbine combustion chambers, Appl. Energy 302 (2021) 117509. [15] M.L. Bai, J.F. Liu, J.H. Chai, X.Y. Zhao, D.R. Yu, Anomaly detection of gas turbines based on normal pattern extraction, Appl. Therm. Eng. 166 (2020) 114664. [16] N. Basha, C. Kravaris, H. Nounou, M. Nounou, Bayesian-optimized Gaussian process-based fault classification in industrial processes, Comput. Chem. Eng. 170 (2023) 108126. [17] M. Wang, D.H. Zhou, M.Y. Chen, Y.W. Wang, Anomaly detection in the fan system of a thermal power plant monitored by continuous and two-valued variables, Control Eng. Pract. 102 (2020) 104522. [18] J.D. Wang, Z.J. Yang, J.J. Su, Y. Zhao, S. Gao, X.K. Pang, D.H. Zhou, Root-cause analysis of occurring alarms in thermal power plants based on Bayesian networks, Int. J. Electr. Power Energy Syst. 103 (2018) 67-74. [19] C.Z. Huang, X.X. Sheng, Data-driven model identification of boiler-turbine coupled process in 1000 MW ultra-supercritical unit by improved bird swarm algorithm, Energy 205 (2020) 118009. [20] T. Li, Y.M. Han, Y.Q. Wang, Z.Q. Geng, A self-attention mechanism integrating adaptive double subspace for fault detection in industrial processes, IEEE Trans. Syst. Man Cybern. Syst. 55 (1) (2025) 540-549. [21] Y.T. Zhang, J.H. Wang, C.L. Li, H.P. Duan, W.H. Wang, Attention-based deep learning models for predicting anomalous shock of wastewater treatment plants, Water Res. 275 (2025) 123192. [22] Z. Zhang, Y.M. Han, B. Ma, Z.Q. Geng, A time series self-supervised contrastive pretraining method with data augmentation using discrepancy of reconstruction information loss, IEEE Trans. Instrum. Meas. 74 (2025) 2514512. [23] Y.D. Shu, L. Ming, F.F. Cheng, Z.P. Zhang, J.S. Zhao, Abnormal situation management: Challenges and opportunities in the big data era, Comput. Chem. Eng. 91 (2016) 104-113. [24] M. aurelio Ranzato, C. Poultney, S. Chopra, Y. Cun, Efficient Learning of Sparse Representations with an Energy-Based Model, in: B. Scholkopf, J. Platt, T. Hoffman (Eds.), Adv. Neural Inf. Process. Syst., MIT Press, 2006. [25] J.Q. Zhu, F. Deng, J.C. Zhao, J. Chen, Adaptive aggregation-distillation autoencoder for unsupervised anomaly detection, Pattern Recognit. 131 (2022) 108897. [26] A.S. D. R. Cox, Some quick sign tests for trend in location and dispersion, Biometrika 42 (1/2) (1955) 80-95. |