1 Ungar, L.H., “A bioreactor benchmark for adaptive network-based process control”, In: Neural Networks for Control, Miller, W.T., Sutton, R.S., Werbos, P.J., eds., MIT Press, Cambridge, MA, 387-402 (1990). 2 Agrawal, P., Lee, C., Lim, H.C., Ramkrishna, D., “Theoretical investigation of dynamic behavior of isothermal continuous stirred tank biological reactors”, Chem. Eng. Sci., 37 (3), 453-462 (1982). 3 Puskorius, G.V., Feldkamp, L.A., “Neural network control of an unstable process”, In: Proceedings of the 36th Midwest Symposium on Circuits and Systems, IEEE Press, Piscataway, NJ, 1, 35-40 (1993). 4 Doerschuk, P.I., Sarrafian, E., “Conventional vs. RBF control of a benchmark process control problem”, In: Proceedings of 1999 International Joint Conference on Neural Networks, IEEE, New York, 4, 2216-2219 (1999). 5 Agrawal, M., Seborg, D.E., “Self-tuning controllers for nonlinear systems”, Automatica, 23 (2), 209-214 (1987). 6 Ungar, L.H., Powell, B.A., Kamens, S., “Adaptive networks for fault diagnosis and process control”, Comp. Chem. Eng., 14 (4/5), 561-572 (1990). 7 Puskorius, G.V., Feldkamp, L.A., “Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks”, IEEE Trans. Neur. Net., 5, 279-297 (1994). 8 Puskorius, G.V., Feldkamp, L.A., “Implicit state observation and control with recurrent neural networks for the bioreactor benchmark problem”, In: Proceedings of 1993 International Joint Conference on Neural Networks, IEEE Press, Piscataway, NJ, 3, 2799-2802 (1993). 9 Huang, D.X., Jin, Y.H., Zhang, J., Morris, A.J., “Non-linear chemical process modeling and application in epichlorhydrine production plant using wavelet networks”, Chin. J. Chem. Eng., 10 (4), 435-443 (2002). 10 Karimi, H., Yousefi, F., “Correlation of vapour liquid equilibria of binary mixtures using artificial neural networks”, Chin. J. Chem. Eng., 15 (5), 765-771 (2007). 11 Song, Y., Chen, Z.Q., Yuan, Z.Z., “Neural network nonlinear predictive control based on Tent-map chaos optimization”, Chin. J. Chem. Eng., 15 (4), 539-544 (2007). 12 Gensym Corporation, G2 Developer’s Guide, Version 7.0, Cambridge, MA (2005). 13 Qian, Y., Li, H.H., Li, X.X., “A Multi-layer information integration platform for chemical process operation systems”, Chin. J. Chem. Eng., 12 (5), 668-672 (2004). 14 Gensym Corporation, NeurOn-Line User’s Guide, Version 7.0, Cambridge, MA (2005). 15 Wen, C.H., Vassiliadis, C.A., “Applying hybrid artificial intelligence techniques in wastewater treatment”, Eng. Appl. Artif. Intel., 11, 695-705 (1998). 16 Lertpalangsunti, N., Chan, C.W., “An architectural framework for hybrid intelligent systems: Implementation issues”, Intel. Data Anal., 4, 375-393 (2000). 17 Lertpalangsunti, N., Chan, C.W., “An architectural framework for the construction of hybrid intelligent forecasting systems: Application for electricity demand prediction”, Eng. Appl. Artif. Intel., 11, 549-565 (1998). 18 Asirvadam, V.S., McLoone, S.F., Irwin, G.W., “Memory efficient BFGS neural-network learning algorithms using MLP-network: A survey”, In: Proceedings of the 2004 IEEE International Conference on Control Applications, IEEE, New York, 1, 586-591 (2004). 19 McLoone, S.F., Asirvadam, V.S., Irwin, G.W., “A memory optimal BFGS neural network training algorithm”, In: Proceedings of the 2002 International Joint Conference on Neural Networks, IEEE, New York, 1, 513-518 (2002). 20 Yang, H.Z., Zhang, S.Z., “The application of BFGS revised algorithm in learning feed forward neural networks”, J. ECUST (China), 27 (5), 459-462 (2001). (in Chinese) 21 Hagan, M.T., Demuth, H.B., Neural Network Design, PWS Publishing Company, Thomson Learning, Boston, USA, 355-405 (1996). |