1 Xiong, Z.H., Zhang, J., Dong, J., “Optimal iterative learning control for batch processes based on linear time-varying perturbation model”, Chin. J. Chem. Eng., 16 (2), 235-240 (2008). 2 Ko, C.L., Wang, F.S., “Run-to-run fed-batch optimization for protein production using recombinant Escherichia coli”, Biochem. Eng. J., 30 (3), 279-285 (2006). 3 Herrera, F., Zhang, J., “Optimal control of batch processes using particle swam optimisation with stacked neural network models”, Comput. Chem. Eng., 33 (10), 1593-1601 (2009). 4 Kawohl, M., Heine, T., King, R., “Model based estimation and optimal control of fed-batch fermentation processes for the production of antibiotics”, Chem. Eng. Process, 46 (11), 1223-1241(2007). 5 Ronen, M., Shabtai, Y., Guterman, H., “Optimization of feeding profile for a fed-batch bioreactor by an evolutionary algorithm”, J. Biotechnol., 97 (3), 253-263 (2002). 6 Li, X.B., Zhao, G.R., Yuan, Y.J., “A strategy of phosphorus feeding for repeated fed-batch fermentation of penicillin G”, Biochem. Eng. J., 27 (1), 53-58 (2006). 7 Kennedy, J., Eberhart, R., “Particle swarm optimization”, In:Proceedings of the IEEE International Conference on Neural Networks, IEEE, Perth, Australia, 1942-1948 (1995). 8 Zhou, J.Z., Fang, R.C., Li, Y.H., Zhang, Y.C., Peng, B., “Parameter optimization of nonlinear grey Bernoulli model using particle swarm optimization”, Appl. Math. Comput., 207 (2), 292-299 (2009). 9 Jiang, Y., Hu, T.S., Huang, C.C., “An improved particle swarm optimization algorithm”, Appl. Math. Comput., 193 (1), 231-239 (2007). 10 Liu, B., Wang, L., Jin, Y.H., Tang, F., Huang, D.X., “Improved particle swarm optimization combined with chaos”, Chaos Soliton. Fract., 25 (5), 1261-1271 (2005). 11 Luo, Y.Q., Yuan, X.G., “Global optimization for the synthesis of integrated water systems with particle swarm optimization algorithm”, Chin. J. Chem. Eng., 13 (4), 535-541 (2005). 12 Francois, G., Srinivasan, B., Bonvin, D., “Use of measurements for enforcing the necessary conditions of optimality in the presence of constraints and uncertainty”, J. Process Control, 15 (6), 701-712 (2005). 13 Bonvin, D., Srinivasan, B., Hunkeler, D., “Control and optimization of batch processes-Improvement of process operation in the production of specialty chemicals”, IEEE Contr. Syst. Mag., 26 (6), 34-45 (2006). 14 Fut, P.C., Barford, J.P., “A hybrid neural network-first principles approach for modeling of cell metabolism”, Comput. Chem. Eng., 20 (6/7), 951-958 (1996). 15 Pertev, C., Turker, M., Berber, R., “Dynamic modeling, sensitivity, analysis and parameter identification of industrial yeast fermenters”, Comput. Chem. Eng., 21 (Suppl.), S739-S744 (1997). 16 Karakuzu, C., Turker, M., Ozturk, S., “Modelling, on-line state estimation and fuzzy control of production scale fed-batch baker's yeast fermentation”, Control Eng. Pract., 14 (8), 959-974 (2006). 17 Yuzgec, U., Turker, M., Hocalar, A., “On-line evolutionary optimization of an industrial fed-batch yeast fermentation process”, ISA T., 48, 79-92 (2009). 18 Chen, L.Z., Nguang, S.K., Chen, X.D., Li, X.M., “Modelling and optimization of fed-batch fermentation processes using dynamic neural networks and genetic algorithms”, Biochem. Eng. J., 22 (1), 51-61 (2004). 19 Eberhart, R.C., Shi, Y., “Comparing inertia weights and constriction factors in particle swarm optimization”, In:Proceedings of the IEEE Congress on Evolutionary Computation, IEEE, San Diego, USA, 84-88 (2000). |