1 Matthews, R.W., “Photooxidation of organic impurities in water using thin films of titanium dioxide”, J. Phys. Chem., 91, 3328-3333 (1987). 2 Aguado, M.A., Giménez, J., Cervera-March, S., “Continuous photocatalytic treatment of Cr(VI) effluents with semiconductor powders”, Chem. Eng. Commun., 104, 71-85 (1991). 3 Belhacova, L., Krysa, J., Jirkovsky, J., “Inactivation of microorganisms in a flow-through photoreactor with an immobilized TiO2 layer”, J. Chem. Technol. Biotechnol., 74, 149-154 (1999). 4 Lyn, D.A., Chiu, K., Blatchley, E.R., “Numerical modeling of flow and disinfection in UV disinfection channels”, J. Environ. Eng., 125, 17-26 (1999). 5 Lawryshyn, Y.A., Cairns, B., “UV disinfection of water:the need for UV reactor validation”, Water Sci. Technol.:Water Supply, 3, 293-300 (2003). 6 Ducoste, J.J., Liu, D., Linden, K., “Alternative approaches to modeling fluence distribution and microbial inactivation in ultraviolet reactors. Lagrangian versus Eulerian”, J. Environ. Eng., 10, 1393-1403 (2005). 7 Kucuk, S., Arastoopour, H., Koutchma, T., “Modeling of UV dose distribution in a thin-film UV reactor for processing of apple cider”, J. Food Eng., 65, 125-136 (2003). 8 Beltran, J.A., Barbosa-Cánovas, G.V., “Advantages and limitations on processing foods by UV light”, Food Sci. Technol. Int., 10, 137-147 (2004). 9 Mahmoud, N.S., Ghaly, A.E., “On-line sterilization of cheese whey using ultraviolet radiation”, Biotechnol. Prog., 20, 550-560 (2004). 10 Noceti, R.P., Taylor, C.E., D’Este, J.R., “Photocatalytic conversion of methane”, Catal. Today, 33, 199-204 (1997). 11 Taylor, C.E., Noceti, R.P., “New developments in the photocatalytic conversion of methane to methanol”, Catal. Today, 55, 259-267 (2000). 12 Gondal, M.A., Hameed, A., Suwaiyan, A., “Photocatalytic conversion of methane into methanol using visible laser”, Appl. Catal. A:General, 243, 165-174 (2003). 13 Gondal, M.A., Hameed, A., Yamani, Z.H., Arfaj, A., “Photocatalytic transformation of methane into methanol under UV laser irradiation over WO3, TiO2 and NiO catalysts”, Chem. Phys. Lett., 392, 372-377 (2004). 14 Cassano, A.E., Martin, C.A., Brandi, R.J., Alfano, O.M., “Photoreactor analysis and design:fundamentals and application”, Ind. Eng. Chem. Res., 34, 2155-2201 (1995). 15 Spadoni, G., Bandini, E., Santarelli, F., “Scattering effects in photo-sensitized reactions”, Chem. Eng. Sci., 33, 517-524 (1978). 16 Yokota, T., Cesur, S., Suzuki, H., Baba, H., Takahata, Y., “Anisotropic cattering model for estimation of light absorption rates in photoreactor with heterogeneous medium”, J. Chem. Eng., 32, 314-321 (1999). 17 Romero, R.L., Alfano, O.M., Cassano, A.E., “Cylindrical photocatalytic reactors. Radiation absorption and scattering effects produced by suspended fine particles in an annular space”, Ind. Eng. Chem. Res., 36, 3094-3109 (1997). 18 Sgalari, G., Camera-Roda, G., Santarelli, F., “Discrete ordinary method in the analysis of radiative transfer in photocatalytically reacting media”, Int. Commun. Heat Mass Transfer, 25, 651-660 (1998). 19 Chui, E.H., Raithby, G.D., “Computation of radiant heat transfer on a non-orthogonal mesh using the finite-volume method”, Numerical Heat Transfer, Part B, 23, 269-288 (1993). 20 Pareek, V.K., Adesina, A.A., “Light intensity distribution in a photocatalytic reactor using finite volume”, AIChE J., 50 (6), 1273-1288 (2004). 21 Rizzuti, L., “Absorption of light energy in photoreactors”. In:Photoelectrochemistry, Photocatalysis and Photoreactors, Schiavello, M., ed., D. Reidel Publishing, Boston, USA (1985). 22 Roger, M., Villermaux, J., “Modeling of light absorption in photoreactors:part 1. general formulation based on the laws of photometry”, Chem Eng J., 17, 219-226 (1979). 23 Zhang, Z., Anderson, W.A., Moo-Young, M., “Rigorous modeling of UV absorption by TiO2 Films in a photocatalytic reactor”, AIChE J.,46 (7), 1461-1470 (2000). 24 Zhang, Z., Anderson, W.A., Moo-Young, M., “An engineering model for the scale-up and design of photocatalytic reactors”, Int. J. Chem. Reactor Eng., A57, 1-8 (2003). 25 Zhang, Z., Anderson, W.A., Moo-Young, M., “Radiation modeling of air phase corrugated plate photocatalytic reactor”, Dyn. Cont., Disc. Imul. Sys. Series B:App. & Alg., 11, 59-68 (2004). 26 Zhang, Z., “Analysis of a corrugated plate photocatalytic reactor”, PhD Thesis, Univ. of Waterloo, Waterloo, Ont. Canada (1999). 27 Donaldson, A.A., Zhang, Z., “UV absorption by TiO2 films in photocatalytic reactors:effect of fold curvature”, AIChE J., doi:10.1002/aic.12683 (2011). 28 Zhang, Z., Anderson, W.A., Moo-Young, M., “Modeling of corrugated plate photocatalytic reactors and experimental validation”, Chem. Eng. Sci., 58, 911-914 (2003). 29 Assink, J.W., Koster, T.P.M., “Mass transfer limitation in heterogeneous photocatalytic processes; a design rule for activity measurements”, In:Proceedings of the 2nd Int. Conf. on Advanced Oxidation Technologies for Water and Air Remediation, London, Canada (2005). 30 Turchi, C.S., Ollis, D.F., “Photocatalytic reactor design:an example of mass-transfer limitations with an immobilized catalyst”, J. Phys. Chem., 92, 6852-6853 (1988). 31 McCabe, W.L., Smith, J.C., Harriott, P., Unit Operations of Chemical Engineering, 5th Edition, McGrw-Hill Inc, USA (1993). 32 McISAAC, L.J., “Mass transfer at rough surfaces in the transitional regime”, M.A.Sc. Thesis, University of Waterloo, Canada (1995). 33 Harriott, P., Hamilton, R.M., “Solid-liquid transfer in turbulent pipe flow”, Chem. Eng. Sci., 20, 1073-1078 (1965). |