1 Lazzús,J.A.,"Prediction of flash point temperature of organic compounds using a hybrid method of group contribution+neural network+particle swarm optimization",Chin.J.Chem.Eng.,18 (5),817-823 (2010). 2 Zou,Z.,Yu,D.,Feng,W.,Yu,L.,Guo,N.,"An intelligent neural networks system for adaptive learning and prediction of a bioreactor benchmark process",Chin.J.Chem.Eng.,16 (1),62-66 (2008). 3 Maass,W.,"Networks of spiking neurons: The third generation of neural network models",Neural Networks,10 (9),1659-1671 (1997). 4 Thorpe,S.,Fize D.,Marlot,C.,"Speed of processing in the human visual system",Nature,381 (6582),520-522 (1996). 5 Fang,H.,Wang,Y.,He,J.,"Spiking neural networks for cortical neuronal spike train decoding",Neural Computation,22 (4),1060-1085 (2010). 6 Maass,W.,"Noisy spiking neurons with temporal coding have more computational power than sigmoidal neurons",In: Advances in Neural Information Processing Systems,MIT Press,Cambridge,USA,9,211-217 (1997). 7 Maass,W.,"Lower bounds for the computational power of networks of spiking neurons",Neural Computation,8 (1),1-40 (1996). 8 Bohte,S.M.,Kok,J.N.,La Poutré,H.,"Error-backpropagation in temporally encoded networks of spiking neurons",Neurocomputing,48,17-37 (2002). 9 Yang,J.,Yang,W.,Wu,W.,"A remark on the error-backpropagation learning algorithm for spiking neural networks",Applied Mathematics Letters,25 (8),1118-1120 (2012). 10 Schrauwen,B.,van Campenhout,J.,"Extending spikeprop",In: Proceedings of the International Joint Conference on Neural Networks,IEEE,Piscataway,USA,471-475 (2004). 11 Xin,J.,Embrechts,M.,"Supervised learning with spiking neural networks",In: Proceedings of International Joint Conference on Neural Networks,IEEE,Piscataway,USA,1772-1777 (2001). 12 McKennoch,S.,Liu,D.,Bushnell,L.G.,"Fast modifications of the SpikeProp algorithm",In: Proceedings of the International Joint Conference on Neural Networks,IEEE,Piscataway,USA,3970-3977 (2006). 13 Ghosh-Dastidar,S.,Adeli,H.,"Improved spiking neural networks for EEG classification and epilepsy and seizure detection",Integr.Comput.-Aid E.,14 (3),187-212 (2007). 14 Delshad,E.,Moallem,P.,Monadjemi,S.A.H.,"Spiking neural network learning algorithms: Using learning rates adaptation of gradient and momentum steps",In: 5th International Symposium on Telecommunications (IST),IEEE,944-949 (2010). 15 Gerstner,W.,Kistler,W.,Spiking Neuron Models,Cambridge University Press,England (2002). 16 Vogl,T.P.,Mangis,J.K.,Rigler,A.K.,Zink,W.T.,Alkon,D.L.,"Accelerating the convergence of the back-propagation method",Biol.Cybern.,59 (4),257-263 (1988). 17 Jacobs,R.A.,"Increased rates of convergence through learning rate adaptation",Neural Networks,1,295-307 (1988). 18 Moore,S.C.,"Back-propagation in spiking neural networks",Master Thesis,University of Bath,UK (2002). 19 Downs,J.J.,Vogel,E.F.,"A plant-wide industrial process control problem",Comput.Chem.Eng.,17 (3),245-255 (1993). 20 "Tennessee Eastman Problem for MATLAB",Control Systems Engineering Laboratory,Arizona State University,1998 [2012-06-08],http://csel.asu.edu/downloads/Software/TEmatlab.zip. 21 Lu,N.,Yu,X.,"Fault diagnosis in TE process based on feature selection via second order mutual information",CIESC Journal,60 (9),2252-2258 (2009). 22 Heeger,D.,"Poisson model of spike generation",New York University,2000 [2012-06-08],http://www.cns.nyu.edu/~david/ftp/handouts/poisson.pdf. |