1 Alvarez, H., Londono, C., “pH neutralization process as a benchmark for testing nonlinear controllers”, Ind. Eng. Chem. Res., 40, 2467-2473 (2001). 2 Nejati, A., Shahrokhi, M., Mehrabani, A., “Comparison between backstepping and input–output linearization techniques for pH process control”, J. Process Control, 22 (1), 263-271 (2012). 3 Altinten, A., “Generalized predictive control applied to a pH neutralization process”, Comput. Chem. Eng., 31 (10), 1199-1204 (2007). 4 Bao, Z.J., Pi, D.Y., Sun, Y.X., “Nonlinear model predictive control based on support vector machine with multi-kernel”, Chin. J. Chem. Eng., 15 (5), 691-697 (2007). 5 Garcia, C.E., Prett, D.M., Morari, M., “Model predictive control: Theory and practice-a survey”, Automatica, 25 (3), 335-348 (1989). 6 Qin, S.J., Badgwell, T.A., “A survey of industrial model predictive control technology”, Control Eng. Practice, 11 (7), 733-764 (2003). 7 Lu, W.X., Zhu, Y., Huang, D.X., Jiang, Y.H., Jin, Y.H., “A new strategy of integrated control and on-line optimization on high-purity distillation process”, Chin. J. Chem. Eng., 18 (1), 66-79 (2010). 8 Zhao, C., Su, H.Y., Gu, Y., Chu, J., “A pragmatic approach for assessing the economic performance of model predictive control systems and its industrial application”, Chin. J. Chem. Eng., 17 (2), 241-250 (2009). 9 Rault, J., Richalet, A., Testud, J.L., Papon, J., “Model predictive heuristic control: application to industrial processes”, Automatica, 14 (5), 413-428 (1978). 10 Mehra, R., Rouhai, R., “Model algorithm control: Review and recent developments”, In: Proceedings of Engineering Foundation Conference on Chemical Process Control II, Sea Island, GA, 287-310 (1982). 11 Zhou, M.F., Wang, S.Q., Jin, X.M., Zhang, Q.L., “Iterative learning model predictive control for a class of continuous/batch processes”, Chin. J. Chem. Eng., 17 (6), 976-982 (2009). 12 Gu, B.F., Gupta, Y.P., “Control of nonlinear processes by using linear model predictive control algorithms”, ISA Transactions, 47 (2), 211-216 (2008). 13 Henson, M.A., “Nonlinear model predictive control: current status and future directions”, Comput. Chem. Eng., 23 (2), 187-202 (1998). 14 Qin, S., Badgwell, T.A., “An overview of nonlinear model predictive control applications”, In Nonlinear Predictive Control, Allgower, F., Zheng, A., eds, Birkhauser, 369-393 (2000). 15 Morari, M., Lee, J.H., “Model predictive control: Past, present and future”, Comput. Chem. Eng., 23 (4-5), 667-682 (1999). 16 Manenti, F., “Considerations on nonlinear model predictive control techniques”, Comput. Chem. Eng., 35 (11), 2491-2509 (2011). 17 Lei, X., Datta, A., “Adaptive model algorithm control”, In: Proceedings of the American Control Conference, Arlington, VA, 4155-4160 (2001). 18 Patikirikorala, T., Wang, L.P., Colman, A., Han, J., “Hammerstein-Wiener nonlinear model based predictive control for relative QoS performance and resource management of software systems”, Control Eng. Practice, 20 (1), 49-61 (2012). 19 Huo, H.B., Zhu, X.J., Hu, W.Q., Tu, H.Y., Li, J., Yang, J., “Nonlinear model predictive control of SOFC based on a Hammerstein model”, Journal of Power Sources, 185 (1), 338-344 (2008). 20 Harnischmacher, G., Marquardt, W., “Nonlinear model predictive control of multivariable processes using block-structured models”, Control Eng. Practice, 15 (10), 1238-1256 (2007). 21 Dolanc, G., Strm?nik, S., “Design of a nonlinear controller based on a piecewise-linear Hammerstein model”, Systems & Control Letters, 57 (4), 332-339 (2008). 22 Fruzzetti, K.P., Palazo?lu, A., McDonald, K.A., “Nolinear model predictive control using Hammerstein models”, J. Process Control, 7 (1), 31-41 (1997). 23 Man, H., Shao, C, “Neural network predictive control of continuous stirred-tank reactor based on Hammerstein-Wiener model”, CIESC Journal, 62 (8), 2275-2280 (2011). 24 ?awryńczuk, M., “On-line set-point optimisation and predictive control using neural Hammerstein models”, Chemical Engineering Journal, 166 (1), 269-287 (2011). 25 Pearson, R.K., “Selecting nonlinear model structures for computer control”, J. Process Control, 13 (1), 1-26 (2003). 26 Bai, E.W., “A blind approach to the Hammerstein-Wiener model identification”, Automatica, 38 (6), 967-979 (2002). 27 Vanbeylen, L., Pintelon, R., Schoukens, J., “Blind maximum likelihood identification of Hammerstein systems”, Automatica, 44 (12), 3139-3146 (2008). 28 Ding, F., Liu, X.P., Liu, G.J., “Identification methods for Hammerstein nonlinear systems”, Digital Signal Processing, 21 (2), 215-238 (2011). 29 Zou, Z.Y., Liu, G.P., Guo, N., “Predictive control of nonlinear Hammerstein systems and application to pH process”, In: Proceedings of European Control Conference 2003, Cambridge, UK, 166 (2003). |