[1] Y. Kang, L. You, X. Xu, Z. Liao, Practices of formation damage control for deep fractured tight gas reservoir in western Si-chuan basin, SPE International Oil& Gas Conference, Beijing, China, 2010. 1-9. [2] Y.T. Cui, G.H. Shan, Study on evaluation method of recovery efficiency in low permeability oilfield, China Foreign Energy 12 (1) (2007) 49-55. [3] S.L. Yang, J.Z. Wei, Reservoir physics, Petroleum Industry Press, China, 2004. [4] Y. Yang, X.F. Li, K.L. Wu, F.R. Wei, X.G. Meng, X.Z. Yang, L. Zhang, A Novel Method for Calculating Oil-water Relative Permeability of Low-permeability Reservoirs Considering Non-Darcy and Capillary Pressure, Sci. Technol. Eng. 12 (33) (2012) 8849-8854. [5] F.Q. Song, C.Q. Liu, A method for calculating the relative permeabilities of water and oil in low permeability reservoirs, J. XI’AN Pet. Inst. 15 (1) (2000) 10-13. [6] D.P. Dong, W.G. Feng, J.F. Zhao, C. Song, R.H. Liu, A method for relative permeability calculation considering start-up pressure gradient, Nat. Gas Ind. 27 (10) (2007) 95-96. [7] Y.E. Deng, C.Q. Liu, H.W. Pang, Calculation of relative permeability of lowpermeability rock with multiple factors, Xinjiang Pet. Geol. 24 (2) (2003) 152-154. [8] M. Honarpour, L. Koederitz, A.H. Harvey, Relative Permeability of Petroleum Reservoirs, CRC Press Inc, Boca Raton, Fla, 1986. [9] S.M. Al-Fattah, Equations for water/oil relative permeability in Saudl Arabian sandstone reservoirs, Saudl Aramco J. Technol. (2004) 48-58 (summer). [10] S.Z. Ke, Application of simulation annealing algorithm in calculation of relative permeability from unsteady-state displacement experimental data, J. China Univ. Pet. 30 (4) (2006) 35-37. [11] K.W. Li, N.H. Roland, Numerical simulation without using experimental data of relative permeability, J. Pet. Sci. Eng. 61 (2) (2008) 67-74. [12] J.L. Tao, N. Wang, DNA computing based on RNA genetic algorithmwith applications in parameter estimation of chemical engineering process, Comput. Chem. Eng. 31 (2) (2007) 1602-1618. [13] K.T. Wang, N. Wang, A protein inspired RNA genetic algorithm for parameter estimation in hydrocracking of heavy oil, Chem. Eng. J. 167 (1) (2011) 228-239. [14] K.T. Wang, N. Wang, A novel RNA genetic algorithm for parameter estimation of dynamic systems, Chem. Eng. Res. Des. 88 (11) (2010) 1485-1493. [15] F. Sun,W.L. Du, R.B. Qi, F. Qian, W.M. Zhong, A Hybrid Improved Genetic Algorithm and Its Application in Dynamic Optimization Problems of Chemical Processes, Chin. J. Chem. Eng. 21 (2) (2013) 144-154. [16] J. Kennedy, Bare bones particle swarms, Proc. IEEE Swarm Intell. Symp. (2003) 80-87. [17] X.D. Yan, W. Yang, H.H. Ma, H.B. Shi, Soft Sensor for Ammonia Concentration at the Ammonia Converter Outlet Based on an Improved Group Search Optimization and BP Neural Network, Chin. J. Chem. Eng. 20 (6) (2012) 1184-1190. [18] J. Kennedy, R.C. Eberhart, Particle swarm optimization, IVProceeding IEEE Conf on Neural Networks, Poscataway, NJ, 1995. 1942-1948. [19] F. van den Bergh, A cooperative approach to particle swarm optimization, IEEE Comput. Intell. Soc. 8 (3) (2004) 225-239. [20] J. Kenndy, R. Mendes, Population structure and particle performance, Proc. IEEE Congr. on Evol. Comput. (2002) 1671-1676. [21] D.P. Clark, Molecular Biology: Understanding the Genetic Revolution, Academic Press, New York, 2005. [22] J. Lis, Genetic algorithmwith the dynamic probability ofmutation in the classification problem, Pattern Recogn. Lett. 16 (12) (1995) 1311-1320. [23] M. Serpell, J.E. Smith, Self-adaptation of mutation operator and probability for permutation representations in genetic algorithms, Evol. Comput. 18 (3) (2010) 491-514. [24] P.J. Angeline, Evolutionary optimization versus particle swarm optimization: philosophy and performance differences, Evol. Program. 1447 (25) (1998) 601-610. [25] J.C. Sun, Z.M. Yang, H.K. Guo, Q.H. Xiao, M.X. Hao, X. Xu, Comparative study of tight reservoir permeability using steady-state and unsteady-state methods, Rock Soil Mech. 34 (4) (2013) 1009-1016. |