[1] M.I. Aguilar, J. Saez, M. Llorens, A. Soler, J.F. Ortuno, Microscopic observation of particle reduction in slaughterhouse wastewater by coagulation-flocculation using ferric sulphate as coagulant and different coagulant aids, Water Res. 37 (2003) 2233-2241. [2] A.L. Ahmad, S. Ismail, S. Bhatia, Optimization of coagulation-flocculation process for palm oil mill effluent using response surface methodology, Environ. Sci. Technol. 39 (2005) 2828-2834. [3] B. Gao, Q. Yue, J. Miao, Evaluation of polyaluminium ferric chloride (PAFC) as a composite coagulant for water and wastewater treatment, Water Sci. Technol. 47 (2003) 127-132. [4] D.S. Wang, W. Sun, Y. Xu, H. Tang, J. Gregory, Speciation stability of inorganic polymer flocculant-PACl, Colloids Surf. A Physicochem. Eng. Asp. 243 (2004) 1-10. [5] Y.C. Ho, I. Norli, F.M. Alkarkhi, N. Morad, Characterization of biopolymeric flocculant (pectin) and organic synthetic flocculant (PAM): A comparative study on treatment and optimization in kaolin suspension, Bioresour. Technol. 101 (2010) 1166-1174. [6] K.E. Lee, T.T. Teng, N. Morad, B.T. Poh, Y.F. Hong, Flocculation of kaolin inwater using novel calcium chloride-polyacrylamide (CaCl2-PAM) hybrid polymer, Sep. Purif. Technol. 75 (2010) 346-351. [7] K.E. Lee, T.T. Teng, N. Morad, B.T. Poh, M. Mahalingam, Flocculation activity of novel ferric chloride-polyacrylamide (FeCl3-PAM) hybrid polymer, Desalination 266 (2011) 108-113. [8] J. Zou, H. Zhu, F. Wang, H. Sui, J. Fan, Preparation of a new inorganic-organic composite flocculant used in solid-liquid separation for waste drilling fluid, Chem. Eng. J. 171 (2011) 350-356. [9] N.D. Tzoupanos, A.I. Zouboulis, Preparation, characterisation and application of novel composite coagulants for surface water treatment, Water Res. 45 (2011) 3614-3626. [10] P.A. Moussas, A.I. Zouboulis, A new inorganic-organic composite coagulant, consisting of polyferric sulphate (PFS) and polyacrylamide (PAA), Water Res. 43 (2009) 3511-3524. [11] K.E. Lee, N. Morad, T.T. Teng, B.T. Poh, Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: A review, Chem. Eng. J. 203 (2012) 370-386. [12] K.E. Lee, I. Khan, N. Morad, T.T. Teng, B.T. Poh, Thermal behaviour andmorphological properties of novel magnesium salt-polyacrylamide composite polymers, Polym. Compos. 32 (2011) 1515-1522. [13] S.J. Ma, M.L. Fu, F.W. Li, N.F.Wu, J. Yang, H.W. Jia, B.Wang, R. Cheng, Preparation of a new inorganic-organic composite dual-coagulant and application of oily wastewater treatment, Adv. Mater. Res 233-235 (2011) 523-527. [14] S.F.Wang, L. Shen, Y.J. Tong, L. Chen, I.Y. Phang, P.Q. Lim, T.X. Liu, Biopolymer chitosan/ montmorillonite nanocomposites: Preparation and characterization, Polym. Degrad. Stab. 90 (2005) 123-131. [15] W.Y. Yang, J.W. Qian, Z.Q. Shen, A novel flocculant of Al(OH)3-polyacrylamide ionic hybrid, J. Colloid Interface Sci. 273 (2004) 400-405. [16] H.L. Wang, J.Y. Cui,W.F. Jiang, Synthesis, characterization and flocculation activity of novel Fe(OH)3-polyacrylamide hybrid polymer, Mater. Chem. Phys. 130 (2011) 993-999. [17] A. Swerin, L. Odberg, L.Wagberg, An extended model for the estimation of flocculation efficiency factors in multicomponent flocculant systems, Colloids Surf. A Physicochem. Eng. Asp. 113 (1996) 25-38. [18] Z.G. Yan, Y.L. Deng, Cationic microparticle based flocculation and retention systems, Chem. Eng. J. 80 (2000) 31-36. [19] D.H. Deng, W.L. Cen, Environmental effect of coal gangue stack area, ChinaMin. Mag. 8 (1999) 87-91. [20] Z.D. Li, Q.L. Zhou, Tailing and gangue: The prosperity resources be recycled, Eng. Sci. 6 (2004) 20-22. [21] Y.P. Chugh, A. Patwardhan, Mine-mouth power and process steam generation using fine coal waste fuel, Resour. Conserv. Recycl. 40 (2004) 225-243. [22] P.F. Zuo, Comprehensive utilization of coal gangue, Coal Technol. 28 (2009) 186-189 (in Chinese). [23] Y.X. Yan, X.F.Wang, X.Q. Wang, Environmental effect and comprehensive utilization of coal-mine waste from Huaibei and Huainan coalfield, J. Anhui Univ. Sci. Technol (Nat. Sci.) 26 (2006) 9-11 (in Chinese with English abstract). [24] J.X. Zhang, H.H. Sun, Y.M. Sun, N. Zhang, Correlation between 29Si polymerization and cementitious activity of coal gangue, J. Zhejiang Univ. Sci. A 10 (2009) 1334-1340. [25] D.X. Li, X.Y. Song, C.C. Gong, Z.H. Pan, Research on cementitious behavior and mechanism of pozzolanic cement with coal gangue, Cem. Concr. Res. 36 (2006) 1752-1759. [26] H.J. Li, H.H. Sun, X.J. Xiao, H.X. Chen, Mechanical properties of gangue-containing aluminosilicate based cementitious materials, J. Univ. Sci. Technol. Beijing 13 (2006) 183-189. [27] X.Y. Song, C.C. Gong, D.X. Li, Study on structural characteristic and mechanical property of coal gangue in activation process, J. Chin. Ceram. Soc. 32 (2004) 358-363. [28] M. Yang, Z.X. Guo, Y.S. Deng, Preparation of CaO-Al2O3-SiO2 glass ceramics from coal gangue, Int. J. Miner. Process. 102-103 (2012) 112-115. [29] US EPA-HQ-RCRA-2008-0329, Materials Characterization Paper in Support of the Advanced Notice of Proposed Rulemaking - Identification of Nonhazardous Materials That Are Solid Waste: Coal Refuse, US EPA, USA, December 16 2008. [30] US EPA-R09-OAR-2012-0398, Materials Characterization Paper in Support of the Final Rulemaking - Identification of Nonhazardous Materials That Are Solid Waste: Coal Refuse, US EPA, USA, February 3 2011. [31] B.Y. Gao, H. Yu, Q.Y. Yue, Study on the preparation of polyaluminum ferric chloride from gangue, Environ. Sci. 17 (1996) 62-63. [32] H.Y.Wang, X.G. Quan, M.J. Shi, Preparation of coal gauge based PSFA and its application to the treatment of drilling wastewater, Ind. Water Treat. 31 (2011) 38-41. [33] H.J. Li, H.H. Sun, Microstructure and cementitious properties of calcined claycontaining gangue, Int. J. Miner. Metall. Mater. 16 (2009) 482-486. [34] C. Li, J. Wan, H. Sun, L. Li, Investigation on the activation of coal gangue by a new compound method, J. Hazard. Mater. 179 (2010) 515-520. |