[1] Z. Ge, T. Chen, Z. Song, Quality prediction for polypropylene production process based on CLGPR model, Control. Eng. Pract. 19 (2011) 423-432.[2] P. Kadlec, B. Gabrys, S. Strandt, Data-driven soft sensors in the process industry, Comput. Chem. Eng. 33 (2009) 795-814.[3] S. Wold, A. Ruhe, H. Wold, W.J. Dunn, The collinearity problem in linear-regression — the partial least-squares (PLS) approach to generalized inverses, SIAM J. Sci. Stat. Comput. 5 (1984) 735-743.[4] E. Tomba, P. Facco, F. Bezzo, S. García-Muñoz, Exploiting historical databases to design the target quality profile for a new product, Ind. Eng. Chem. Res. 52 (2013) 8260-8271.[5] E. Tomba, P. Facco, F. Bezzo, M. Barolo, Latent variable modeling to assist the implementation of Quality-by-Design paradigms in pharmaceutical development and manufacturing: a review, Int. J. Pharm. 457 (2013) 283-297.[6] F. Yacoub, J.F. MacGregor, Product optimization and control in the latent variable space of nonlinear PLS models, Chemom. Intell. Lab. Syst. 70 (2004) 63-74.[7] C.M. Jaeckle, J.F. MacGregor, Product design through multivariate statistical analysis of process data, AIChE J. 44 (1998) 1105-1118.[8] S. Garcia-Munoz, T. Kourti, J.F. MacGregor, F. Apruzzese, M. Champagne, Optimization of batch operating policies. Part I. Handling multiple solutions, Ind. Eng. Chem. Res. 45 (2006) 7856-7866.[9] E. Tomba, M. Barolo, S. Garcia-Munoz, General framework for latent variable model inversion for the design and manufacturing of new products, Ind. Eng. Chem. Res. 51 (2012) 12886-12900.[10] S. Garcia-Munoz, J.F. MacGregor, D. Neogi, B.E. Latshaw, S. Mehta, Optimization of batch operating policies. Part II. Incorporating process constraints and industrial applications, Ind. Eng. Chem. Res. 47 (2008) 4202-4208.[11] F. Yacoub, J.F. MacGregor, Robust processes through latent variable modeling and optimization, AIChE J. 57 (2011) 1278-1287.[12] J. Flores-Cerrillo, J.F. MacGregor, Latent variableMPC for trajectory tracking in batch processes, J. Process Control 15 (2005) 651-663.[13] M. Golshan, J.F. MacGregor, M.J. Bruwer, P. Mhaskar, Latent variable model predictive control (LV-MPC) for trajectory tracking in batch processes, J. Process Control 20 (2010) 538-550.[14] M. Golshan, J.F. MacGregor, P. Mhaskar, Latent variable model predictive control for trajectory tracking in batch processes: alternative modeling approaches, J. Process Control 21 (2011) 1345-1358.[15] D. Lauri, J.A. Rossiter, J. Sanchis, M. Martinez, Data-driven latent-variable modelbased predictive control for continuous processes, J. Process Control 20 (2010) 1207-1219.[16] Q. Chi, Z. Fei, Z. Zhao, L. Zhao, J. Liang, A model predictive control approach with relevant identification in dynamic PLS framework, Control. Eng. Pract. 22 (2014) 181-193.[17] S. Wold, M. Sjostrom, L. Eriksson, PLS-regression: a basic tool of chemometrics, Chemom. Intell. Lab. Syst. 58 (2001) 109-130.[18] S.Wold, J. Trygg, A. Berglund, H. Antti, Some recent developments in PLS modeling, Chemom. Intell. Lab. Syst. 58 (2001) 131-150.[19] P. Geladi, B.R. Kowalski, Partial least-squares regression — a tutorial, Anal. Chim. Acta 185 (1986) 1-17.[20] E. Eskinat, S.H. Johnson, W.L. Luyben, Use of Hammerstein models in identification of nonlinear-systems, AIChE J. 37 (1991) 255-268.[21] K.H. Chan, J. Bao, Model predictive control of Hammerstein systems with multivariable nonlinearities, Ind. Eng. Chem. Res. 46 (2007) 168-180.[22] K.P. Burnham, D.R. Anderson, Multimodel inference understanding AIC and BIC in model selection, Sociol. Methods Res. 33 (2004) 261-304.[23] S.J. Qin, T.J. McAvoy, Nonlinear PLS modeling using neural networks, Comput. Chem. Eng. 16 (1992) 379-391.[24] M.A. Henson, D.E. Seborg, Adaptive nonlinear control of a pH neutralization process, IEEE Trans. Control Syst. Technol. 2 (1994) 169-182.[25] S. Salehi, M. Shahrokhi, A. Nejati, Adaptive nonlinear control of PH neutralization processes using fuzzy approximators, Control. Eng. Pract. 17 (2009) 1329-1337.[26] N.P. Khare, B. Lucas, K.C. Seavey, Y.A. Liu, A. Sirohi, S. Ramanathan, S. Lingard, Y.H. Song, C.C. Chen, Steady-state and dynamic modeling of gas-phase polypropylene processes using stirred-bed reactors, Ind. Eng. Chem. Res. 43 (2004) 884-900.[27] H. Lou, H. Su, L. Xie, Y. Gu, G. Rong, Inferential model for industrial polypropylene melt index prediction with embedded priori knowledge and delay estimation, Ind. Eng. Chem. Res. 51 (2012) 8510-8525.[28] K.B.McAuley, J.F.MacGregor, Online inference of polymer properties in an industrial polyethylene reactor, AIChE J. 37 (1991) 825-835. |