[1] I.M. Banat, P. Nigam, D. Singh, R. Marchant, Microbial decolorization of textile dyes containing effluents: A review, Bioresour. Technol. 58(1996) 217-227.[2] I.A. ?engil, M. Özacar, The decolorization of C.I. Reactive Black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes, J. Hazard. Mater. 161(2009) 1369-1376.[3] M. Ali, T.R. Sreekrishnan, Aquatic toxicity from pulp and paper mill effluents: A review, Adv. Environ. Res. 5(2004) 175-196.[4] M.C. Hasegawa, A.M. Barbosa, K. Takashima, Biotreatment of industrial tannery wastewater using Botryosphaeria rhodina, J. Serb. Chem. Soc. 76(2011) 439-446.[5] S.G. Schrank, H.J. José, R.F.P.M. Moreira, H.Fr. Schröder, Elucidation of the behavior of tannery wastewater under advanced oxidation conditions, Chemosphere 56(2004) 411-423.[6] R. Agarwal, S. Lata, M. Gupta, P. Singh, Removal of melanoidin present in distillery effluent as a major colorant: A review, J. Environ. Biol. 31(2010) 521-528.[7] C. Raghukumar, C. Mohandass, S. Kamat, M.S. Shailaja, Simultaneous detoxification and decolorization of molasses spent wash by the immobilized white-rot fungus Flavodon flavus isolated from a marine habitat, Enzym. Microb. Technol. 35(2004) 197-202.[8] J.W. Choi, H.K. Song,W. Lee, K.K. Koo, C. Han, B.K. Na, Reduction of COD and color of acid and reactive dyestuff wastewater using ozone, Korean J. Chem. Eng. 21(2004) 398-403.[9] M.R. Kumar, K. Saravanan, R. Shanmugan, Recycling of woven fabric dyeing wastewater practiced in Perundurai common effluent treatment plant, J. Mod. Appl. Sci. 3(2009) 146-160.[10] T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: A critical review on current treatment technologies with proposed alternative, Bioresour. Technol. 77(2001) 247-255.[11] N. Daneshvar, H. Ashassi-Sorkhabi, A. Tizpar, Decolorization of orange II by electrocoagulation method, Sep. Purif. Technol. 31(2003) 153-162.[12] K. Kadirvelu, M. Kavipriya, C. Karthika, M. Radhika, N. Vennilamani, S. Pattabhi, Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions, Bioresour. Technol. 87(2003) 129-132.[13] C. Novotny, N. Dias, A. Kapanen, K. Malachova, M. Vandrovcova, M. Itavaara, Comparative use of bacterial, algal and protozoan tests to study toxicity of azo and anthraquinone dyes, Chemosphere 63(2006) 1436-1442.[14] E. Forgacs, T. Cserháti, G. Oros, Removal of synthetic dyes from wastewaters: A review, Environ. Int. 30(2004) 953-971.[15] G.M. Shaul, T.J. Holdsworth, C.R. Demmpsey, K.A. Dostal, Fate of water soluble azo dyes in the activated sludge process, Chemosphere 22(1991) 107-119.[16] I. Mielgo, M.T. Moreira, G. Feijoo, J.M. Lema, A packed-bed fungal bioreactor for the continuous decolourisation of azo-dyes (Orange II), J. Biotechnol. 89(2001) 99-106.[17] C. Palma, J. Urra, C. Vásquez, E. Contreras, Detoxification of azo dyes mediated by cell-free supernatant culture with MnP activity: Effect of Mn+2 concentration and H2O2 dose, Biotechnol. Prog. 28(2012) 114-120.[18] S.M. Tsui, W. Chu, Photocatalytic degradation of dye pollutants in the presence of acetone, Water Sci. Technol. 44(2001) 173-180.[19] J.N. Wu, T.N. Wang, Effects of some water-quality and operating parameters on the decolorization of reactive dye solutions by ozone, J. Environ. Sci. Health A 36(2001) 1335-1347.[20] J.H. Park, E. Choi, K.I. Gil, Removal of reactive dye using UV/TiO2 in circular type reactor, J. Environ. Sci. Health A 38(2003) 1389-1399.[21] C. Palma, A. Carvajal, C. Vásquez, E. Contreras,Wastewater treatment for removal of recalcitrant compounds: A hybrid process for decolorization and biodegradation of dyes, Chin. J. Chem. Eng. 19(2011) 621-625.[22] E. Contreras, L. Sepulveda, C. Palma, Valorization of agro-industrial wastes as biosorbent for the removal of textile dyes from aqueous solutions, Int. J. Chem. Eng. 679352(2012).[23] L.A. Sepúlveda, F.A. Cuevas, E.G. Contreras, Valorization of agricultural wastes as dye adsorbents: Characterization and adsorption isotherms, Environ. Technol. (2015) http://dx.doi.org/10.1080/09593330.2015.1016119.[24] M.C. Baquero, L. Giraldo, J.C. Moreno, F. Suárez-García, A. Martínez-Alonso, J.M.D. Tascón, Activated carbons by pyrolysis of coffee bean husks in presence of phosphoric acid, J. Anal. Appl. Pyrolysis 70(2003) 779-784.[25] R.L. Tseng, S.K. Tseng, Pore structure and adsorption performance of the KOHactivated carbons prepared from corncob, J. Colloid Interface Sci. 287(2005) 428-437.[26] J.E. Vargas, L. Giraldo, J.C. Moreno-Piraján, Preparation of activated carbons from seeds of Macuna mutisiana by physical activation with steam, J. Anal. Appl. Pyrolysis 89(2010) 307-312.[27] O. Ioannidou, A. Zabaniotou, Agricultural residues as precursors for activated carbon production-A review, Renew. Sust. Energ. Rev. 11(2007) 1966-2005.[28] A.E. Putun, N. Ozbay, E.P. Onal, E. Putun, Fixed-bed pyrolysis of cotton stalk for liquid and solid products, Fuel Process. Technol. 86(2005) 1207-1219.[29] M.E. González, M. Cea, N. Sangaletti, A. González, C. Toro, M.C. Díez, N. Moreno, X. Querol, R. Navia, Biochar derived from agricultural and forestry residual biomass: Characterization and potential application for enzymes immobilization, J. Biobased Mater. Bioenergy 7(2013) 724-732.[30] M.P. Elizalde-González, J.Mattusch, A.A. Peláez-Cid, R.Wennrich, Characterization of adsorbent materials prepared from avocado kernel seeds: Natural, activated and carbonized forms, J. Anal. Appl. Pyrolysis 78(2007) 185-193.[31] B.S. Girgis, S.S. Yunis, A.M. Soliman, Characterization of activated carbon from peanut hulls in relation to condition of preparation, Mater. Lett. 57(2002) 164-172.[32] M.P. Elizalde-González, V. Hernández-Montoya, Fruit seeds as adsorbents and precursors of carbon for the removal of anthraquinone dyes, Int. J. Chem. Eng. 1(2008) 243-253.[33] M.P. Elizalde-González, V. Hernández-Montoya, Guava seed as adsorbent and as precursor of carbon for the adsorption of acid dyes, Bioresour. Technol. 100(2009) 2111-2117.[34] M.P. Elizalde-González, V. Hernández-Montoya, Removal of acid orange 7 by guava seed carbon: A four parameter optimization study, J. Hazard. Mater. 168(2009) 515-522.[35] A.S. Franca, L.S. Oliveira,M.E. Ferreira, Kinetics and equilibriumstudies of methylene blue adsorption by spent coffee grounds, Desalination 249(2009) 267-272.[36] B.H. Hameed, D.K.Mahmoud, A.L. Ahmad, Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste, J. Hazard. Mater. 158(2008) 65-72.[37] S. Patil, S. Renukdas, N. Patel, Removal of methylene blue, a basic dye from aqueous solutions by adsorption using teak tree (Tectona grandis) bark powder, Int. J. Environ. Sci. 1(2011) 711-726.[38] M.P. Dominguez, K. Araus, P. Bonert, F. Sánchez, G. San Miguel, M. Toledo, The avocado and its wastes: An approach of fuel potential/application, Springer, Berlin, 2014.[39] M.J.Werman, I. Neeman, Avocado oil production and chemical characteristics, J. Am. Oil Chem. Soc. 64(1987) 229-232.[40] D.A. Jacobo-Velázquez, C. Hernández-Brenes, Sensory shelf-life limiting factor of high hydrostatic pressure processed avocado paste, J. Food Sci. 76(2011) S388-S395.[41] G.A. Ramtahal, J.O. Akingbala, G.S.H. Baccus-Taylor, Laboratory preparation and evaluation of Pollock variety avocado (Persea americana Mill) guacamole, J. Sci. Food Agric. 87(2007) 2068-2074.[42] F.S. Gómez, S.P. Sánchez, M.G.G. Iradi, N.A.M. Azman, M.P. Almajano, Avocado seeds: Extraction optimization and possible use as antioxidant in food, Antioxidants 3(2014) 439-454.[43] Elizalde-González, M.P.,Dávila-Jiménez,M.M., Davila,O.O., "Process for obtaining an adsorbent from avocado waste and use of the adsorbent", U.S. Pat. US20130306564A1(2013).[44] A.A. Peláez-Cid, M.M.M. Teutli-León, Lignocellulosic precursors used in the elaboration of activated carbon, InTech, Croatia, 2012.[45] C. Palma, E. Contreras, J. Urra, M.J. Martínez, Eco-friendly technologies based on banana peel use for the decolourization of the dyeing process wastewater, Waste Biomass Valoriz. 2(2011) 77-86.[46] M.S. Roriz, J.F. Osma, J.A. Teixeira, S.R. Couto, Application of response surface methodology approach to optimize Reactive Black 5 decolourization by crude laccase from Trametes pubescens, J. Hazard. Mater. 169(2009) 691-696.[47] H. Ceylan, S. Kubilay, N. Aktas, N. Sahiner, An approach for prediction of optimum reaction conditions for laccase-catalyzed bio-transformation of 1-naphthol by response surface methodology (RSM), Bioresour. Technol. 99(2008) 2025-2031.[48] J. Lehmann, M.C. Rillig, J. Thies, C. Masiello, W.C. Howkaday, D. Crowley, Biochar effects on soil biota-A review, Soil Biol. Biochem. 43(2011) 1812-1836.[49] J.M. Novak, I. Lima, B. Xing, J.W. Gaskin, C. Steiner, K.C. Das, M. Ahmedna, D. Rehrah, D.W. Watts, W.J. Busscher, H. Schomberg, Characterization of designer biochar produced at different temperatures and their effects on loamy sand, Ann. Environ. Sci. 3(2009) 195-206.[50] R. Aguado, M. Olazar, A. Barona, J. Bilbao, Char-formation kinetics in the pyrolysis of sawdust in a conical spouted bed reactor, J. Chem. Technol. Biotechnol. 75(2010) 583-588.[51] X.Wang, D. Li,W. Li, J. Peng, H. Xia, L. Zhang, S. Guo, G. Chen, Optimization of mesoporous activated carbon fromcoconut shells by chemical activationwith phosphoric acid, Bioresources 8(2013) 6184-6195.[52] IUPAC,Manual of symbols and terminology of colloid surface, Butterworths, London, 1982.[53] H. Marsh, F. Rodriguez-Reinoso, Activated carbon, Elsevier Science and Technology Books, Amsterdam, 2006.[54] G. Crini, H.N. Peindy, Adsorption of CI basic blue 9 on cyclodextrin-based material containing carboxylic groups, Dyes Pigments 70(2005) 204-211.[55] R. Dhodapkar, P. Borde, T. Nandy, Super absorbent polymers in environmental remediation, Global NEST J. 11(2009) 223-234.[56] M.A. Tshabalala, Determination of the acid-base characteristics of lignocellulosic surfaces by inverse gas chromatography, J. Appl. Polym. Sci. 65(1997) 1013-1020.[57] X. Li, Y. Tang, X. Cao, D. Lu, F. Luo, W. Shao, Preparation and evaluation of orange peel cellulose adsorbents for effective removal of cadmium, zinc, cobalt and nickel, Colloids Surf. A 317(2008) 512-521.[58] T. Negesse, Nutrient composition, volatile fatty acids production, digestible organic matter and anti-nutritional factors of some agro-industrial by-products of Ethiopia, SINET Ethiop. J. Sci. 32(2009) 149-156.[59] M.F.R. Pereira, S.F. Soares, J.J.M. Órfão, J.L. Figueiredo, Adsorption of dyes on activated carbons: Influence of surface chemical groups, Carbon 41(2003) 811-821.[60] M.M. Dávila-Jiménez, M.O. Elizalde-González, V. Hernández-Montoya, Performance ofmango seed adsorbents in the adsorption of anthraquinone and azo dyes in single and binary aqueous solutions, Bioresour. Technol. 100(2009) 6199-6206.[61] A. Demirbas, Agricultural based activated carbons for the removal of dyes from aqueous solution: A review, J. Hazard. Mater. 167(2009) 1-9.[62] N.K. Amin, Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics, J. Hazard. Mater. 165(2009) 52-65.[63] E. Contreras, B. Martínez, L. Sepúlveda, C. Palma, Kinetics of basic dye adsorption onto Sphagnum magellanicum peat, Adsorpt. Sci. Technol. 25(2007) 637-646.[64] Y.S. Ho, G. McKay, Kinetics models for the sorption of dye from aqueous solution by wood, Trans. IChemE Part B 76(1998) 183-191.[65] F.A. Batzias, D.K. Sidiras, Simulation of dye adsorption by beech sawdust as affected by pH, J. Hazard. Mater. 141(2007) 668-679.[66] G. Sun, X. Xu, Sunflower stalks as adsorbents for color removal from textile wastewater, Ind. Eng. Chem. Res. 36(1997) 808-812.[67] Gupta, V.K. Suhas, Application of low-cost adsorbents for dye removal-A review, J. Environ. Manag. 90(2009) 2313-2342.[68] I. Ali, V.K. Gupta, Advances in water treatment by adsorption technology, Nat. Protoc. 1(2007) 2661-2667.[69] Z.Z. Chowdhury, S.M. Zain, R.A. Khan, K. Khalid, Batch and fixed bed adsorption studies of lead(II) cations fromaqueous solutions onto granular activated carbon derived from Mangostana garcinia shell, Bioresources 7(2012) 2895-2915. |