[1] L. Desborough, R. Miller, Increasing customer value of industrial control performance monitoring-Honeywell's experience, AIChE Symposium Series 2002, pp. 169-189. [2] B. Huang, S.L. Shah, Performance Assessment of Control Loops:Theory and Applications, Springer, 1999. [3] S.J. Qin, Control performance monitoring-a review and assessment, Comput. Chem. Eng. 23(2) (1998) 173-186. [4] M. Jelali, An overview of control performance assessment technology and industrial applications, Control. Eng. Pract. 14(5) (2006) 441-466. [5] Y. Shardt, Y. Zhao, F. Qi, K. Lee, X. Yu, B. Huang, S. Shah, Determining the state of a process control system:current trends and future challenges, Can. J. Chem. Eng. 90(2) (2012) 217-245. [6] M. Bauer, A. Horch, L. Xie, M. Jelali, N. Thornhill, The current state of control loop performance monitoring-a survey of application in industry, J. Process Control 38(2016) 1-10. [7] T.J. Harris, Assessment of control loop performance, Can. J. Chem. Eng. 67(5) (1989) 856-861. [8] B. Huang, S. Shah, The role of the unitary interactor matrix in the explicit solution of the singular LQ output feedback control problem, Automatica 33(11) (1997) 2071-2075. [9] C.A. McNabb, S.J. Qin, Projection based MIMO control performance monitoring:I-covariance monitoring in state space, J. Process Control 13(8) (2003) 739-757. [10] B. Huang, S.L. Shah, R. Miller, Feedforward plus feedback controller performance assessment of MIMO systems, IEEE Trans. Control Syst. Technol. 8(3) (2000) 580-587. [11] L. Desborough, T. Harris, Performance assessment measures for univariate feedforward/feedback control, Can. J. Chem. Eng. 71(4) (1993) 605-616. [12] C. Bode, B. Ko, T. Edgar, Run-to-run control and performance monitoring of overlay in semiconductor manufacturing, Control Eng. Pract. 12(7) (2004) 893-900. [13] M. Jelali, Performance assessment of control systems in rolling mills-application to strip thickness and flatness control, J. Process Control 17(10) (2007) 805-816. [14] Q. Meng, Z. Zhong, J. Liu, A practical approach of online control performance monitoring, Chemom. Intell. Lab. Syst. 142(2015) 107-116. [15] Q. Yuan, B. Lennox, Control performance assessment for multivariable systems based on a modified relative variance technique, J. Process Control 19(3) (2009) 489-497. [16] R. Kadali, B. Huang, Controller performance analysis with LQG benchmark obtained under closed loop conditions, ISA Trans. 41(4) (2002) 521-537. [17] N. Danesh Pour, B. Huang, S.L. Shah, Performance assessment of advanced supervisory-regulatory control systems with subspace LQG benchmark, Automatica 46(8) (2010) 1363-1368. [18] R. Kadali, B. Huang, Estimation of the dynamic matrix and noise model for model predictive control using closed-loop data, Ind. Eng. Chem. Res. 41(4) (2002) 842-852. [19] S. Wei, J. Cheng, Y. Wang, Data-driven two-dimensional LQG benchmark based performance assessment for batch processes under ILC, 9th International Symposium on Advanced Control of Chemical Processes 2015, pp. 291-296. [20] R.H. Julien, M.W. Foley, W.R. Cluett, Performance assessment using a model predictive control benchmark, J. Process Control 14(4) (2004) 441-456. [21] E. Horton, M. Foley, K. Kwok, Performance assessment of level controllers, Int. J. Adapt. Control Signal Process. 17(7-9) (2003) 663-684. [22] J. Yu, S.J. Qin, Statistical MIMO controller performance monitoring. Part I:Datadriven covariance benchmark, J. Process Control 18(3) (2008) 297-319. [23] J. Yu, S.J. Qin, Statistical MIMO controller performance monitoring. Part Ⅱ:Performance diagnosis, J. Process Control 18(3) (2008) 297-319. [24] C. Li, B. Huang, F. Qian, Hellinger distance based probability distribution approach to performance monitoring of nonlinear control systems, Chin. J. Chem. Eng. 23(12) (2015) 1945-1950. [25] Q. Li, J. Whiteley, R. Rhinehart, A relative performance monitor for process controllers, Int. J. Adapt. Control Signal Process. 17(7-9) (2003) 685-708. [26] L. Das, B. Srinivasan, R. Rengaswamy, A novel framework for integrating data mining with control loop performance assessment, AIChE J. 62(1) (2016) 146-165. [27] S. Alcántara, R. Vilanova, C. Pedret, PID control in terms of robustness performance and servo/regulator trade-offs:A unifying approach to balanced autotuning, J. Process Control 23(4) (2013) 527-542. [28] A.Y. Sendjaja, V. Kariwala, Achievable PID performance using sums of squares programming, J. Process Control 19(6) (2009) 1061-1065. [29] B.-S. Ko, T.F. Edgar, PID control performance assessment:The single-loop case, AICHE J. 50(6) (2004) 1211-1218. [30] F. Shahni, G. Malwatkar, Assessment minimum output variance with PID controllers, J. Process Control 21(4) (2011) 678-681. [31] R. Fu, L. Xie, Z. Song, Y. Cheng, PID control performance assessment using iterative convex programming, J. Process Control 22(9) (2012) 1793-1799. [32] Z. Yu, J. Wang, Assessment of proportional-integral control loop performance for input load disturbance rejection, Ind. Eng. Chem. Res. 51(36) (2012) 11744-11752. [33] H.-P. Huang, J.-C. Jeng, Monitoring and assessment of control performance for single loop systems, Ind. Eng. Chem. Res. 41(5) (2002) 1297-1309. [34] Q. Jin, Q. Liu, Q. Wang, Y. Tian, Y. Wang, PID controller design based on the time domain information of robust IMC controller using maximum sensitivity, Chin. J. Chem. Eng. 21(5) (2013) 529-536. [35] M. Shamsuzzoha, M. Lee, IMC-PID controller design for improved disturbance rejection of time-delayed processes, Ind. Eng. Chem. Res. 46(7) (2007) 2077-2091. [36] J. Dong, C.B. Brosilow, Design of robust multivariable PID controllers via IMC, Proceedings of the 1997 American Control Conference 1997, pp. 3380-3384. [37] S. Skogestad, Simple analytic rules for model reduction and PID controller tuning, J. Process Control 13(4) (2003) 291-309. [38] E. Jahanshahi, S. Sivalingam, J.B. Schofield, Industrial test setup for autotuning of PID controllers in large-scale processes:Applied to Tennessee Eastman process, The 9th IFAC Symposium on Advanced Control of Chemical Processes 2015, pp. 469-476. [39] M. Veronesi, A. Visioli, Performance assessment and retuning of PID controllers, Ind. Eng. Chem. Res. 48(5) (2009) 2616-2623. [40] M. Veronesi, A. Visioli, Performance assessment and retuning of PID controllers for integral processes, J. Process Control 20(3) (2010) 261-269. [41] Z. Yu, J. Wang, B. Huang, Z. Bi, Performance assessment of PID control loops subject to setpoint changes, J. Process Control 21(8) (2011) 1164-1171. [42] M. Morari, J.H. Lee, Model predictive control:Past, present and future, Comput. Chem. Eng. 23(4) (1999) 667-682. [43] J. Schäfer, A. Cinar, Multivariable MPC system performance assessment, monitoring, and diagnosis, J. Process Control 14(2) (2004) 113-129. [44] R.S. Patwardhan, S.L. Shah, K.Z. Qi, Assessing the performance of model predictive controllers, Can. J. Chem. Eng. 80(5) (2002) 954-966. [45] X. Wang, Performance assessment and monitoring of MPC with mismatch based on covariance benchmark, 8th World Congress on Intelligent Control and Automation (WCICA) 2010, pp. 3795-3800. [46] A. AlGhazzawi, B. Lennox, Model predictive control monitoring using multivariate statistics, J. Process Control 19(2) (2009) 314-327. [47] G. Ji, K. Zhang, Y. Zhu, A method of MPC model error detection, J. Process Control 22(3) (2012) 635-642. [48] M.Kano,Y.Shigi,S.Hasebe,S.Ooyama,Detectionofsignificantmodel-plantmismatch from routine operation data of model predictive control system, 9th International Symposium on Dynamics and Control of Process Systems 2010, pp. 685-690. [49] H. Wang, Z. Song, L. Xie, Parametric mismatch detection and isolation in model predictive control system, 8th IFAC International Symposium on Advanced Control of Chemical Processes 2012, pp. 154-159. [50] Y. Tsai, R. Gopaluni, D. Marshman, T. Chmelyk, A novel algorithm for model-plant mismatch detection for model predictive controllers, IFAC-PapersOnLine 48(8) (2015) 746-752. [51] A.N. Venkat, P. Vijaysai, R.D. Gudi, Identification of complex nonlinear processes based on fuzzy decomposition of the steady state space, J. Process Control 13(6) (2003) 473-488. [52] A. Helbig, W. Marquardt, F. Allgöwer, Nonlinearity measures:definition, computation and applications, J. Process Control 10(2) (2000) 113-123. [53] N. Hernjak, F.J. Doyle, Glucose control design using nonlinearity assessment techniques, AICHE J. 51(2) (2005) 544-554. [54] F. Yang, S.L. Shah, D. Xiao, T. Chen, Improved correlation analysis and visualization of industrial alarm data, ISA Trans. 51(4) (2012) 499-506. [55] P. Duan, T. Chen, S.L. Shah, F. Yang, Methods for root cause diagnosis of plant-wide oscillations, AICHE J. 60(6) (2014) 2019-2034. [56] E. Naghoosi, B. Huang, Diagnosis of oscillations between controller tuning and harmonic external disturbances, IEEE Trans. Control Syst. Technol. 23(4) (2015) 1283-1293. [57] F. Yang, D. Xiao, Progress in root cause and fault propagation analysis of large-scale industrial processes, J. Control Sci. Eng. (2012). [58] C. Xia, J. Zheng, J. Howell, Isolation of whole-plant multiple oscillations via nonnegative spectral decomposition, Chin. J. Chem. Eng. 15(3) (2007) 353-360. [59] T. Hägglund, A control-loop performance monitor, Control Eng. Pract. 3(11) (1995) 1543-1551. [60] T. Hägglund, Automatic detection of sluggish control loops, Control Eng. Pract. 7(12) (1999) 1505-1511. [61] P. Kuehl, A. Horch, Detection of sluggish control loops-experiences and improvements, Control Eng. Pract. 13(8) (2005) 1019-1025. [62] A. Visioli, Method for proportional-integral controller tuning assessment, Ind. Eng. Chem. Res. 45(8) (2006) 2741-2747. [63] T.I. Salsbury, A practical method for assessing the performance of control loops subject to random load changes, J. Process Control 15(4) (2005) 393-405. [64] N. Stanfelj, T.E. Marlin, J.F. MacGregor, Monitoring and diagnosing process control performance:the single-loop case, Ind. Eng. Chem. Res. 32(2) (1993) 301-314. [65] R. Howard, D. Cooper, A novel pattern-based approach for diagnostic controller performance monitoring, Control Eng. Pract. 18(3) (2010) 279-288. [66] Z. Sun, S.J. Qin, A. Singhal, L. Megan, Performance monitoring of model-predictive controllers via modelresidual assessment, J. Process Control 23(4) (2013)473-482. [67] C.A. Harrison, S.J. Qin, Discriminating between disturbance and process model mismatch in model predictive control, J. Process Control 19(10) (2009) 1610-1616. [68] B. Huang, On-line closed-loop model validation and detection of abrupt parameter changes, J. Process Control 11(6) (2001) 699-715. [69] H. Jiang, B. Huang, S.L. Shah, Closed-loop model validation based on the two-model divergence method, J. Process Control 19(4) (2009) 644-655. [70] B. Huang, E.C. Tamayo, Model validation for industrial model predictive control systems, Chem. Eng. Sci. 55(12) (2000) 2315-2327. [71] B. Huang, A. Malhotra, E.C. Tamayo, Model predictive control relevant identification and validation, Chem. Eng. Sci. 58(11) (2003) 2389-2401. [72] B. Huang, Multivariable model validation in the presence of time-variant disturbance dynamics, Chem. Eng. Sci. 55(20) (2000) 4583-4595. [73] J.R. Webber, Y.P. Gupta, A closed-loop cross-correlation method for detecting model mismatch in MIMO model-based controllers, ISA Trans. 47(4) (2008) 395-400. [74] A.S. Badwe, R.D. Gudi, R.S. Patwardhan, S.L. Shah, S.C. Patwardhan, Detection of model-plant mismatch in MPC applications, J. Process Control 19(8) (2009) 1305-1313. [75] N.F. Thornhill, T. Hägglund, Detection and diagnosis of oscillation in control loops, Control Eng. Pract. 5(10) (1997) 1343-1354. [76] N.F. Thornhill, B. Huang, H. Zhang, Detection of multiple oscillations in control loops, J. Process Control 13(1) (2003) 91-100. [77] X. Li, J. Wang, B. Huang, S. Lu, The DCT-based oscillation detection method for a single time series, J. Process Control 20(5) (2010) 609-617. [78] R. Srinivasan, R. Rengaswamy, R. Miller, A modified empirical mode decomposition (EMD) process for oscillation characterization in control loops, Control Eng. Pract. 15(9) (2007) 1135-1148. [79] N.E. Huang, M.L. Wu, W. Qu, S.R. Long, S.S. Shen, Applications of Hilbert-Huang transform to non-stationary financial time series analysis, Appl. Stoch. Model. Bus. Ind. 19(3) (2003) 245-268. [80] A. Tangirala, S. Shah, N. Thornhill, PSCMAP:A new tool for plant-wide oscillation detection, J. Process Control 15(8) (2005) 931-941. [81] N.F. Thornhill, S.L. Shah, B. Huang, A. Vishnubhotla, Spectral principal component analysis of dynamic process data, Control Eng. Pract. 10(8) (2002) 833-846. [82] C. Xia, J. Howell, Isolating multiple sources of plant-wide oscillations via independent component analysis, Control Eng. Pract. 13(8) (2005) 1027-1035. [83] C. Xia, J. Howell, N.F. Thornhill, Detecting and isolating multiple plant-wide oscillations via spectral independent component analysis, Automatica 41(12) (2005) 2067-2075. [84] H. Jiang, M.A.A.S. Choudhury, S.L. Shah, Detection and diagnosis of plant-wide oscillations from industrial data using the spectral envelope method, J. Process Control 17(2) (2007) 143-155. [85] M.A.A.S. Choudhury, S.L. Shah, N.F. Thornhill, Diagnosis of process nonlinearities and valve stiction:data driven approaches, Springer, 2008. [86] N.F. Thornhill, Finding the source of nonlinearity in a process with plant-wide oscillation, IEEE Trans. Control Syst. Technol. 13(3) (2005) 434-443. [87] M. Chioua, M. Bauer, S.-L. Chen, J.C. Schlake, G. Sand, W. Schmidt, N.F. Thornhill, Plant-wide root cause identification using plant key performance indicators (KPIs) with application to a paper machine, Control Eng. Pract. (2015). [88] F. Yang, P. Duan, S.L. Shah, T. Chen, Capturing Connectivity and Causality in Complex Industrial Processes, Springer, 2014. [89] R. Landman, J. Kortela, Q. Sun, S.-L. Jämsä-Jounela, Fault propagation analysis of oscillations in control loops using data-driven causality and plant connectivity, Comput. Chem. Eng. (2014). [90] M. Bauer, N.F. Thornhill, A practical method for identifying the propagation path of plant-wide disturbances, J. Process Control 18(7) (2008) 707-719. [91] P. Duan, F. Yang, T. Chen, S.L. Shah, Direct causality detection via the transfer entropy approach, IEEE Trans. Control Syst. Technol. 21(6) (2013) 2052-2066. [92] P. Duan, F. Yang, S.L. Shah, T. Chen, Transfer zero-entropy and its application for capturing cause and effect relationship between variables, IEEE Trans. Control Syst. Technol. 23(3) (2015) 855-867. [93] T. Yuan, S.J. Qin, Root cause diagnosis of plant-wide oscillations using Granger causality, J. Process Control 24(2) (2014) 450-459. [94] N.F. Thornhill, J.W. Cox, M.A. Paulonis, Diagnosis of plant-wide oscillation through data-driven analysis and process understanding, Control Eng. Pract. 11(12) (2003) 1481-1490. [95] M. Shoukat Choudhury, N.F. Thornhill, S.L. Shah, Modelling valve stiction, Control Eng. Pract. 13(5) (2005) 641-658. [96] M. Jelali, B. Huang, Detection and Diagnosis of Stiction in Control Loops:State of the Art and Advanced Methods, Springer, 2009. [97] Y. Yamashita, An automatic method for detection of valve stiction in process control loops, Control Eng. Pract. 14(5) (2006) 503-510. [98] A.S.R. Brásio, A. Romanenko, N.C.P. Fernandes, Detection of stiction in level control loops, IFAC-PapersOnLine 48(8) (2015) 421-426. [99] Q.P. He, J. Wang, M. Pottmann, S.J. Qin, A curve fitting method for detecting valve stiction in oscillating control loops, Ind. Eng. Chem. Res. 46(13) (2007) 4549-4560. [100] A. Horch, Condition Monitoring of Control Loops(PhD thesis) Royal Institute of Technology, Stockholm, Sweden, 2000. [101] J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, J. Doyne Farmer, Testing for nonlinearity in time series:The method of surrogate data, Physica D Nonlinear Phenom. 58(1-4) (1992) 77-94. [102] M.A.A.S. Choudhury, S.L. Shah, N.F. Thornhill, Diagnosis of poor control-loop performance using higher-order statistics, Automatica 40(10) (2004) 1719-1728. [103] M.A.A.S. Choudhury, S.L. Shah, N.F. Thornhill, D.S. Shook, Automatic detection and quantification of stiction in control valves, Control Eng. Pract. 14(12) (2006) 1395-1412. [104] R. Srinivasan, R. Rengaswamy, S. Narasimhan, R. Miller, Control loop performance assessment:2. Hammerstein model approach for stiction diagnosis, Ind. Eng. Chem. Res. 44(17) (2005) 6719-6728. [105] M. Jelali, Estimation of valve stiction in control loops using separable least-squares and global search algorithms, J. Process Control 18(7) (2008) 632-642. [106] Q.P. He, J. Wang, S.J. Qin, An alternative stiction-modelling approach and comparison of different stiction models, Detection and Diagnosis of Stiction in Control Loops, Springer 2010, pp. 37-59. [107] J. Wang, Q. Zhang, Detection of asymmetric control valve stiction from oscillatory data using an extended Hammerstein system identification method, J. Process Control 24(1) (2014) 1-12. [108] S.J. Qin, Process data analytics in the era of big data, AIChE J. 60(9) (2014) 3092-3100. [109] C. Shang, F. Yang, D. Huang, W. Lyu, Data-driven soft sensor development based on deep learning technique, J. Process Control 24(3) (2014) 223-233. [110] X. Gao, C. Shang, Y. Jiang, D. Huang, T. Chen, Refinery scheduling with varying crude:a deep belief network classification and multimodel approach, AIChE J. 60(7) (2014) 2525-2532. [111] C. Shang, B. Huang, F. Yang, D. Huang, Slow feature analysis for monitoring and diagnosis of control performance, J. Process Control 39(2016) 21-34. [112] Y.A. Shardt, B. Huang, Data quality assessment of routine operating data for process identification, Comput. Chem. Eng. 55(2013) 19-27. |