[1] P. Kadlec, R. Grbić, B. Gabrys, Review of adaptation mechanisms for data-driven soft sensors, Comput. Chem. Eng. 35(2011) 1-24. [2] G. Liu, D. Zhou, H. Xu, C. Mei, Model optimization of SVM for a fermentation soft sensor, Expert Syst. Appl. 37(2010) 2708-2713. [3] H. Jin, X. Chen, J. Yang, L. Wang, L. Wu, Online local learning based adaptive soft sensor and its application to an industrial fed-batch chlortetracycline fermentation process, Chemom. Intell. Lab. Syst. 143(2015) 58-78. [4] R. Luttmann, D.G. Bracewell, G. Cornelissen, K.V. Gernaey, J. Glassey, V.C. Hass, et al., Soft sensors in bioprocessing:A status report and recommendations, Biotechnol. J. 7(2012) 1040-1048. [5] R. Sharmin, U. Sundararaj, S. Shah, L.V. Griend, Y.-J. Sun, Inferential sensors for estimation of polymer quality parameters:Industrial application of a PLS-based soft sensor for a LDPE plant, Chem. Eng. Sci. 61(2006) 6372-6384. [6] Z.X. Wang, Q.P. He, J. Wang, Comparison of variable selection methods for PLS-based soft sensor modeling, J. Process Control 26(2015) 56-72. [7] L. Cui, P. Xie, J. Sun, T. Yu, J. Yuan, Data-driven prediction of the product formation in industrial 2-keto-L-gulonic acid fermentation, Comput. Chem. Eng. 36(2012) 386-391. [8] K. Sun, J. Liu, J.-L. Kang, S.-S. Jang, D.S.-H. Wong, D.-S. Chen, Development of a variable selection method for soft sensor using artificial neural network and nonnegative garrote, J. Process Control 24(2014) 1068-1075. [9] H. Kaneko, K. Funatsu, Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants, Chemom. Intell. Lab. Syst. 137(2014) 57-66. [10] P. Kadlec, B. Gabrys, S. Strandt, Data-driven Soft Sensors in the process industry, Comput. Chem. Eng. 33(2009) 795-814. [11] X. Yuan, Z. Ge, Z. Song, Soft sensor model development in multiphase/multimode processes based on Gaussian mixture regression, Chemom. Intell. Lab. Syst. 138(2014) 97-109. [12] H. Wang, Gaussian process and its application to soft-sensor modeling, J. Chem. Ind. Eng. 58(2007) 2840-2845. [13] F.D. Sciascio, A.N. Amicarelli, Biomass estimation in batch biotechnological processes by Bayesian Gaussian process regression, Comput. Chem. Eng. 32(2008) 3264-3273. [14] G. McLachlan, D. Peel, Finite Mixture Models, John Wiley & Sons, 2004. [15] Z. Fan, J. Cao, Y. Wei, Dynamic soft sensor modeling based on state detection and impulses response template, Chinese Control and Decision Conference 2014, pp. 4031-4037. [16] A. Bernstein, C. Stein, Enhancing dynamic soft sensors based on DPLS:a temporal smoothness regularization approach, J. Process Control 28(2015) 17-26. [17] H.G. Sung, Gaussian Mixture Regression and Classification, Rice University, 2004. [18] P. Guo, M.R. Lyu, Software quality prediction using mixture model with EM algorithm, Proceedings of the First Asia-Pacific Conference on Quality Software, (APAQS 2000), Hong Kong 2000, pp. 69-78. [19] J. Yu, S.J. Qin, Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models, AICHE J. 54(2008) 1811-1829. [20] X. Dai, W. Wang, Y. Ding, Z. Sun, "Assumed inherent sensor" inversion based ANN dynamic soft-sensing method and its application in erythromycin fermentation process, Comput. Chem. Eng. 30(2006) 1203-1225. [21] L. Ljung, Some Aspects on Nonlinear System Identification, 2007. [22] E. Zamprogna, M. Barolo, D.E. Seborg, Optimal selection of soft sensor inputs for batch distillation columns using principal component analysis, J. Process Control 15(2005) 39-52. [23] J.R. King, D.A. Jackson, Variable selection in large environmental data sets using principal components analysis, Environmetrics 10(1999) 67-77. [24] K.P. Burnham, D.R. Anderson, Multimodel inference:understanding AIC and BIC in model selection, Sociol. Methods Res. 33(2004) 261-304. [25] X. Zhang, Y. Li, M. Kano, Quality prediction in complex batch processes with just-intime learning model based on non-Gaussian dissimilarity measure, Ind. Eng. Chem. Res. 54(31) (2015) 7694-7705. [26] G. Birol, C. Ündey, A. Cinar, A modular simulation package for fed-batch fermentation:penicillin production, Comput. Chem. Eng. 26(2002) 1553-1565. [27] S. Calinon, F. D'Halluin, E.L. Sauser, D.G. Caldwell, A.G. Billard, Learning and reproduction of gestures by imitation, IEEE Rob. Autom. Mag. 17(2010) 44-54. |