[1] M. Lürling, G. Waajen, F. van Oosterhout, Humic substances interfere with phosphate removal by lanthanum modified clay in controlling eutrophication, Water Res. 54 (1) (2014) 78-88.[2] P. Roccaro, M. Yan, G.V. Korshin, Use of log-transformed absorbance spectra for online monitoring of the reactivity of natural organic matter, Water Res. 84 (1) (2015) 136-143.[3] H. Hauduc, I. Takacs, S. Smith, A. Szabo, S. Murthy, G.T. Daigger, M. Sperandio, A dynamic physicochemical model for chemical phosphorus removal, Water Res. 73 (1) (2015) 157-170.[4] W.L. Huang, W. Cai, H. Huang, Z.F. Lei, Z.Y. Zhang, J.H. Tay, D.J. Lee, Identification of inorganic and organic species of phosphorus and its bio-availability in nitrifying aerobic granular sludge, Water Res. 68 (1) (2015) 423-431.[5] C.Y. Ki, K.H. Kwon, S.W. Kim, K.S. Min, T.U. Lee, D.J. Park, Effects of injection of acetic acid and propionic acid for total phosphorus removal at high temperature in enhanced biological phosphorus removal process, Water Sci. Technol. 69 (10) (2014) 2023-2028.[6] M.Q. Hui, J.G. Jin, H. Chao, Determination of phosphite, phosphate, glyphosate and aminomethylphosphonic acid by two-dimensional ion chromatography system coupled with capillary ion chromatography, Chin. J. Anal. Chem. 41 (12) (2013) 1910-1914.[7] Y. Zhang, P. Thepsithar, X. Jiang, J.H. Tay, Direct determination of phosphate in raw Jatropha curcas oil by ion chromatography, Ind. Crop. Prod. 44 (1) (2013) 459-464.[8] B.S. Gentle, P.S. Ellis, P.A. Faber, M.R. Grace, I.D. McKelvie, A compact portable flow analysis system for the rapid determination of total phosphorus in estuarine and marine waters, Anal. Chim. Acta 674 (2) (2010) 117-122.[9] E.M. Wilson, J. Tureckova, P. Rotwein, Micro cobalt electrodes for detection of total phosphorus in water, Micro Nano Lett. 71 (12) (2012) 1176-1179.[10] C. Valls-Cantenys, M. Iglesias, J.L. Todoli, Speciation of phosphorus oxoacids in natural and waste water samples, J. Chromatogr. A 1231 (2012) 16-21.[11] H.C. Kim, High-rate MIEX filtration for simultaneous removal of phosphorus and membrane foulants from secondary effluent, Water Res. 69 (1) (2015) 40-50.[12] M.P. Ginige, A.S. Kayaalp, K.Y. Cheng, J. Wylie, A.H. Kaksonen, Biological phosphorus and nitrogen removal in sequencing batch reactors: effects of cycle length, dissolved oxygen concentration and influent particulate matter, Water Sci. Technol. 68 (5) (2013) 982-990.[13] H. Haimi, M. Mulas, F. Corona, R. Vahala, Data-derived soft-sensors for biological wastewater treatment plants: an overview, Environ. Model. Softw. 47 (1) (2013) 88-107.[14] Y.Q. Liu, J.D. Chen, Z.H. Sun, Y. Li, D.P. Huang, A probabilistic self-validating soft-sensor with application towastewater treatment, Comput. Chem. Eng. 71 (1) (2014) 263-280.[15] G. Leonhardt, S. Fach, C. Engelhard, H. Kinzel, W. Rauch, A software-based sensor for combined sewer overflows, Water Sci. Technol. 66 (7) (2012) 1475-1482.[16] M.H. Kim, Y.S. Kim, A.A. Prabu, C.K. Yoo, A systematic approach to data-driven modeling and soft sensing in a full-scale plant, Water Sci. Technol. 60 (2) (2009) 363-370.[17] J.Q. Wan, M.Z. Huang, Y.W. Ma, Prediction of effluent quality of a paper mill wastewater treatment using an adaptive network-based fuzzy inference system, Appl. Soft Comput. 11 (3) (2011) 3238-3246.[18] X.S. Qin, F.R. Gao, G.H. Chen, Wastewater quality monitoring system using sensor fusion and machine learning techniques, Water Res. 46 (4) (2012) 1133-1144.[19] M.W. Lee, S.H. Hong, H. Choi, Real-time remote monitoring of small-scaled biological wastewater treatment plants by a multivariate statistical process control and neural network-based software sensors, Process Biochem. 43 (10) (2008) 1107-1113.[20] O. Cinar, H. Hasar, C. Kinaci, Modeling of submerged membrane bioreactor treating cheese whey wastewater by artificial neural network, J. Biotechnol. 123 (2) (2006) 204-209.[21] K. Hu, J.Q. Wan, Y.W. Ma, A fuzzy neural network model for monitoring A2/O process using on-line monitoring parameters, J. Environ. Sci. Health Part A 47 (5) (2012) 744-754.[22] H.G. Han, Y. Li, Y.N. Guo, J.F. Qiao, A recurrent self-organizing neural network for predicting sludge volume index, Applied Soft Computing 38 (1) (2016) 477-486.[23] H.G. Han, J.F. Qiao, Prediction of activated sludge bulking based on a self-organizing RBF neural network, J. Process Control 22 (6) (2012) 1103-1112.[24] P.F. Cao, X.G. Luo, Soft sensor model derived fromwienermodel structure:modeling and identification, Chin. J. Chem. Eng. 22 (5) (2014) 538-548.[25] K. Hiromasa, F. Kimito, Estimation of predictive accuracy of soft sensormodels based on data density, Chemom. Intell. Lab. Syst. 128 (2013) 111-117.[26] D. Cecil, M. Kozlowska, Software sensors are a real alternative to true sensors, Environ. Model. Softw. 25 (5) (2010) 622-625.[27] W.M. Shao, X.M. Tian, Adaptive soft sensor for quality prediction of chemical processes based on selective ensemble of local partial least squares models, Chem. Eng. Res. Des. 95 (1) (2015) 113-132.[28] P. Kadlec, B. Gabrys, S. Strandt, Data-driven soft sensors in the process industry, Comput. Chem. Eng. 33 (4) (2009) 795-814.[29] I.T. Jolliffe, Principal Component Analysis, Springer, Heidelberg, 2002.[30] P. Geladi, B.R. Kowalski, Partial least-square regression: a tutorial, Anal. Chim. Acta 185 (1) (1986) 1-17.[31] J.L. Liu, Developing a soft sensor based on sparse partial least squares with variable selection, J. Process Control 24 (7) (2014) 1046-1056.[32] P. Shan, S. Peng, L. Tang, C.X. Yang, Y.H. Zhao, Q. Xie, C.W. Li, A nonlinear partial least squares with slice transform based piecewise linear inner relation, Chemom. Intell. Lab. Syst. 143 (1) (2015) 97-110.[33] Y.W. Lei, L.X. Ding, W.S. Zhang, Generalization performance of radial basis function networks, IEEE Trans. Neural Netw. Learn. Syst. 26 (3) (2015) 551-564.[34] H.G. Han, Q.L. Chen, J.F. Qiao, An efficient self-organizing RBF neural network for water quality prediction, Neural Netw. 24 (7) (2011) 717-725.[35] H. Yu, T. Xie, S. Paszczynski, B.M. Wilamowski, Advantages of radial basis function networks for dynamic system design, IEEE Trans. Ind. Electron. 58 (12) (2011) 5438-5450.[36] J. Ghosh, A. Nag, Radial Basis Function Networks 2, Springer, Heidelberg, 2001.[37] H.G. Han, J.F. Qiao, Adaptive computation algorithm for RBF neural network, IEEE Trans. Neural Netw. Learn. Syst. 23 (2) (2012) 342-347. |