[1] E. Zarifi, G. Jahanfarnia, Subchannel analysis of TiO2 nanofluid as the coolant in VVER-1000 reactor, Prog. Nucl. Energy 73(2014) 140-152. [2] M. Nazififard, M. Nematollahi, K. Jafarpur, K.Y. Suh, Numerical simulation of waterbased alumina nanofluid in subchannel geometry, Sci. Technol. Nucl. Installations 2012(2014), 928406, http://dx.doi.org/10.1155/2012/928406. [3] M. Abd-El Aziz, Unsteady fluid and heat flow induced by a stretching sheet with mass transfer and chemical reaction, Chem. Eng. Commun. 197(2010) 1261-1272. [4] G. Domairry, A. Aziz, Approximate analysis of MHD squeeze flow between two parallel disks with suction or injection by homotopy perturbation method, Math. Probl. Eng. 2009(2009) 603916. [5] M. Mustafa, T. Hayat, S. Obaidat, On heat and mass transfer in the unsteady squeezing flow between parallel plates, Meccanica 47(2012) 1581-1589. [6] M. Turkyilmazoglu, Analytical solutions of single and multi-phase models for the condensation of nanofluid film flow and heat transfer, Eur. J. Mech. B. Fluids 53(2015) 272-277. [7] M. Hatami, G. Domairry, Transient vertically motion of a soluble particle in a Newtonian fluid media, Powder Technol. 253(February 2014) 481-485. [8] M. Hatami, D.D. Ganji, Motion of a spherical particle on a rotating parabola using Lagrangian and high accuracy Multi-step Differential Transformation Method, Powder Technol. 258(May 2014) 94-98. [9] M. Hatami, D.D. Ganji, Motion of a spherical particle in a fluid forced vortex by DQM and DTM, Particuology 16(October 2014) 206-212. [10] A.S. Dogonchi, M. Hatami, G. Domairry, Motion analysis of a spherical solid particle in plane Couette Newtonian fluid flow, Powder Technol. 274(April 2015) 186-192. [11] M. Haghshenas Fard, M. Nasr Esfahany, M.R. Talaie, Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model, Int. Commun. Heat Mass Transfer 37(2010) 91-97. [12] S. Göktepe, K. Atalık, H. Ertürk, Comparison of single and two-phase models for nanofluid convection at the entrance of a uniformly heated tube, Int. J. Therm. Sci. 80(2014) 83-92. [13] S.T. Mohyud-Din, Z.A. Zaidi, U. Khan, N. Ahmed, On heat and mass transfer analysis for the flow of a nanofluid between rotating parallel plates, Aerosp. Sci. Technol. (2015), http://dx.doi.org/10.1016/j.ast.2015.07.020. [14] T. Hayat, M. Imtiaz, A. Alsaedi, M.A. Kutbi, MHD three-dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation, J. Magn. Magn. Mater. 396(2015) 31-37. [15] J.A. Khan, M. Mustafa, T. Hayat, A. Alsaedi, Three-dimensional flow of nanofluid over a non-linearly stretching sheet:An application to solar energy, Int. J. Heat Mass Transf. 86(2015) 158-164. [16] M. Hatami, D.D. Ganji, Natural convection of sodium alginate (SA) non-Newtonian nanofluid flow between two vertical flat plates by analytical and numerical methods, Case Stud. Therm. Eng. 2(March 2014) 14-22. [17] M. Fakour, A. Vahabzadeh, D.D. Ganji, M. Hatami, Analytical study of micropolar fluid flow and heat transfer in a channel with permeable walls, J. Mol. Liq. 204(April 2015) 198-204. [18] S.E. Ghasemi, M. Hatami, A. Kalani Sarokolaie, D.D. Ganji, Study on blood flow containing nanoparticles through porous arteries in presence of magnetic field using analytical methods, Physica E:Low-dimensional Syst. Nanostruct. 70(June 2015) 146-156. [19] S.E. Ghasemi, M. Hatami, G.H.R. Mehdizadeh Ahangar, D.D. Ganji, Electrohydrodynamic flow analysis in a circular cylindrical conduit using least square method, J. Electrost. 72(1) (February 2014) 47-52. [20] M. Rahimi-Gorji, O. Pourmehran, M. Hatami, D.D. Ganji, Statistical optimization of microchannel heat sink (MCHS) geometry cooled by different nanofluids using RSM analysis, Eur. Phys. J. Plus 130(February 2015) 22. [21] G. Domairry, M. Hatami, Squeezing Cu-water nanofluid flow analysis between parallel plates by DTM-Padé Method, J. Mol. Liq. 193(May 2014) 37-44. [22] A.R. Ahmadi, A. Zahmatkesh, M. Hatami, D.D. Ganji, A comprehensive analysis of the flow and heat transfer for a nanofluid over an unsteady stretching flat plate, Powder Technol. 258(May 2014) 125-133. [23] M.N. Ozisik, Heat Conduction, second ed. John Wiley &Sons Inc, USA, 1993. [24] R.H. Stern, H. Rasmussen, Left ventricular ejection:Model solution by collocation, an approximate analytical method, Comput. Boil. Med. 26(1996) 255-261. [25] B. Vaferi, V. Salimi, D. Dehghan Baniani, A. Jahanmiri, S. Khedri, Prediction of transient pressure response in the petroleum reservoirs using orthogonal collocation, J. Pet. Sci. Eng. 98-99(2012) 156-163. [26] M. Hatami, D.D. Ganji, Thermal behavior of longitudinal convective-radiative porous fins with different section shapes and ceramic materials (SiC and Si3N4), Ceram. Int. 40(5) (June 2014) 6765-6775. [27] M. Hatami, D.D. Ganji, Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis, Int. J. Refrig. 40(April 2014) 140-151. [28] M. Hatami, G.H.R. Mehdizadeh Ahangar, D.D. Ganji, K. Boubaker, Refrigeration efficiency analysis for fully wet semi-spherical porous fins, Energy Convers. Manag. 84(August 2014) 533-540. [29] S.E. Ghasemi, P. Valipour, M. Hatami, D.D. Ganji, Heat transfer study on solid and porous convective fins with temperature-dependent heat generation using efficient analytical method, J. Cent. South Univ. 21(12) (December 2014) 4592-4598. [30] G. Shaoqin, D. Huoyuan, Negative norm least-squares methods for the incompressible magneto-hydrodynamic equations, Acta Math. Sci. 28 B (3) (2008) 675-684. [31] S.E. Ghasemi, M. Hatami, D.D. Ganji, Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation, Case Stud. Therm. Eng. 4(November 2014) 1-8. [32] A. Aziz, Heat Conduction With Maple, R.T. Edwards, Philadelphia (PA), 2006. [33] M. Hatami, Experimental optimization of the vanes geometry for a variable geometry turbocharger (VGT) using a Design of Experiment (DoE) approach, Energy Convers. Manag. 106(2015) 1057-1070. [34] B. Pak, Y. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle, Exp. Heat Transfer 11(2) (1998). [35] M. Turkyilmazoglu, A note on the correspondence between certain nanofluid flows and standard fluid flows, J. Heat Transf. 137(2) (2015) 024501. |