[1] P. Janknecht, A.D. Lopes, A.M. Mendes, Removal of industrial cutting oil from oil emulsions by polymeric ultra-and microfiltration membranes, Environ. Sci. Technol. 38(18) (2004) 4878-4883. [2] Á. Cambiella, E. Ortea, G. Ríos, et al., Treatment of oil-in-water emulsions:Performance of a sawdust bed filter, J. Hazard. Mater. 131(B131) (2006) 195-199. [3] D. Saha, S. Deng, Hydrogen adsorption on metal-organic framework MOF-177, Tsinghua. Sci. Technol. 15(4) (2010) 363-376. [4] J.-R. Li, R.J. Kuppler, H.-C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev. 38(5) (2009) 1477-1504. [5] L. Ma, C. Abney, W. Lin, Enantioselective catalysis with homochiral metal-organic frameworks, Chem. Soc. Rev. 38(5) (2009) 1248-1256. [6] R.C. Huxford, J. Della Rocca, W. Lin, Metal-organic frameworks as potential drug carriers, Curr. Opin. Chem. Biol. 14(2) (2010) 262-268. [7] K.-S. Lin, A.K. Adhikari, C.-N. Ku, et al., Synthesis and characterization of porous HKUST-1 metal organic frameworks for hydrogen storage, Int. J. Hydrog. Energy 37(18) (2012) 13865-13871. [8] K. Yang, F. Xue, Q. Sun, et al., Adsorption of volatile organic compounds by metal-organic frameworks MOF-177, J. Environ. Chem. Eng. 1(4) (2013) 713-718. [9] S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, et al., A chemically functionalizable nanoporous material[Cu3(TMA)2(H2O)3]n, Science 283(5405) (1999) 1148-1150. [10] Q. Min Wang, D. Shen, M. Bülow, et al., Metallo-organic molecular sieve for gas separation and purification, Micropor Mesopor Mat. 55(2002) 217-230. [11] K. Schlichte, T. Kratzke, S. Kaskel, Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2, Micropor Mesopor Mat. 73(1-2) (2004) 81-88. [12] N.A. Khan, S.H. Jhung, Facile syntheses of metal-organic framework Cu3(BTC)2(H2O)3 under ultrasound, Bull. Kor. Chem. Soc. 30(12) (2009) 2921-2926. [13] J.L.C. Rowsell, O.M. Yaghi, Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks, J. Am. Chem. Soc. 128(4) (2006) 1304-1315. [14] J. Liu, J.T. Culp, S. Natesakhawat, et al., Experimental and theoretical studies of gas adsorption in Cu3(BTC)2:an effective activation procedure, J. Phys. Chem. C 111(26) (2007) 9305-9313. [15] N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs):Routes to various MOF topologies, morphologies, and composites, Chem. Rev. 112(2) (2012) 933-969. [16] O. Shekhah, H. Wang, D. Zacher, et al., Growth mechanism of metal-organic frameworks:insights into the nucleation by employing a step-by-step route, Angew. Chem. Int. Ed. 48(27) (2009) 5038-5041. [17] N. Al-Janabi, P. Hill, L. Torrente-Murciano, et al., Mapping the Cu-BTC metal-organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases, Chem. Eng. J. 281(2015) 669-677. [18] L. Li, J.C. Li, Z. Rao, et al., Metal organic framework[Cu3(BTC)2(H2O)3] for the adsorption of methylene blue from aqueous solution, Desalin. Water Treat. 52(2014) 7332-7338. [19] N. Klein, A. Henschel, S. Kaskel, n-Butane adsorption on Cu3(btc)2 and MIL-101, Micropor Mesopor Mat. 129(2010) 238-242. [20] E.A. Vlasova, S.A. Yakimov, E.V. Naidenko, et al., Application of metal-organic frameworks for purification of vegetable oils, Food Chem. 190(2016) 103-109. |