[1] Z.H. Huang, G. Liu, F. Kang, Glucose-promoted Zn-based metal-organic framework/graphene oxide composites for hydrogen sulfide removal, ACS Appl. Mater. Interfaces 4(9) (2012) 4942-4947. [2] I.I. Novochinskii, C. Song, X. Ma, X. Liu, L. Shore, J. Lampert, R.J. Farrauto, Lowtemperature H2S removal from steam-containing gas mixtures with ZnO for fuel cell application. 1. ZnO particles and extrudates, Energy Fuel 18(2) (2004) 576-583. [3] S. Nishimura, M. Yoda, Removal of hydrogen sulfide from an anaerobic biogas using a bio-scrubber, Water Sci. Technol. 36(6) (1997) 349-356. [4] F. Adib, A. Bagreev, T.J. Bandosz, Analysis of the relationship between H2S removal capacity and surface properties of unimpregnated activated carbons, Environ. Sci. Technol. 34(4) (2000) 686-692. [5] M.A. Shields, N.I. Dowling, P.D. Clark, Catalytic H2S conversion and SO2 production over iron oxide and iron oxide/γ-Al2O3 in liquid sulfur, Ind. Eng. Chem. Res. 46(23) (2007) 7721-7728. [6] T.H. Ko, H. Chu, L.K. Chaung, The sorption of hydrogen sulfide from hot syngas by metal oxides over supports, Chemosphere 58(4) (2005) 467-474. [7] T.L. Guidotti, Hydrogen sulfide advances in understanding human toxicity, Int. J. Toxicol. 29(6) (2010) 569-581. [8] J.A. Arcibar-Orozco, R. Wallace, J.K. Mitchell, T.J. Bandosz, Role of surface chemistry and morphology in the reactive adsorption of H2S on iron (Hydr) oxide/graphite oxide composites, Langmuir 31(9) (2015) 2730-2742. [9] H. Atakül, J.P. Wakker, A.W. Gerritsen, P.J. van den Berg, Removal of H2S from fuel gases at high temperatures using MnO/γ-Al2O3, Fuel 74(2) (1995) 187-191. [10] D. Montes, E. Tocuyo, E. González, D. Rodríguez, R. Solano, R. Atencio, M.A. Ramos, A. Moronta, Reactive H2S chemisorption on mesoporous silica molecular sievesupported CuO or ZnO, Microporous Mesoporous Mater. 168(2013) 111-120. [11] H. Tajizadegan, M. Rashidzadeh, M. Jafari, R. Ebrahimi-Kahrizsangi, Novel ZnO-Al2O3 composite particles as sorbent for low temperature H2S removal, Chin. Chem. Lett. 24(2) (2013) 167-169. [12] B. Liang, R. Korbee, A.W. Gerritsen, C.M. Van Den Bleek, Preparation of the Mn/γ-Al2O3 acceptor for high temperature regenerative H2S removal, Can. J. Chem. Eng. 77(3) (1999) 483-488. [13] S.S. Tamhankar, M. Bagajewicz, G.R. Gavalas, P.K. Sharma, M. FlytzaniStephanopoulos, Mixed-oxide sorbents for high-temperature removal of hydrogen sulfide, Ind. Eng. Chem. Process Des. Dev. 25(2) (1986) 429-437. [14] S. Chytil, M. Kure, R. Lødeng, E.A. Blekkan, On the initial deactivation of MnxOy-Al2O3 sorbents for high temperature removal of H2S from producer gas, Fuel Process. Technol. 133(2015) 183-194. [15] S. Chen, Y. Zhang, M. Wu, W. Fang, Y. Yang, Study on methanethiol synthesis from H2S and dimethyl sulfide over Al2O3 catalysts promoted with phosphorus, Appl. Catal. A Gen. 431(2012) 151-156. [16] S.H. Kang, J.W. Bae, S.M. Kim, K.W. Jun, Effect of phosphorus modification on Cu-ZnO-Al2O3 for the removal of H 2S, Energy Fuel 22(4) (2008) 2580-2584. [17] S.Y. Jung, S.J. Lee, J.J. Park, S.C. Lee, H.K. Jun, T.J. Lee, C.K. Ryu, J.C. Kim, The simultaneous removal of hydrogen sulfide and ammonia over zinc-based dry sorbent supported on alumina, Sep. Purif. Technol. 63(2) (2008) 297-302. [18] M. Dobrovolszky, Z. Paál, P. Tétényi, Uptake of hydrogen sulfide by molybdena-alumina catalysts containing group 8-10 metals, Appl. Catal. A Gen. 142(1) (1996) 159-174. [19] A. Miroliaee, A. Salehirad, A.R. Rezvani, Ion-pair complex precursor approach to fabricate high surface area nanopowders of MgAl2O4 spinel, Mater. Chem. Phys. 151(2015) 312-317. [20] N. Sutradhar, A. Sinhamahapatra, S.K. Pahari, P. Pal, H.C. Bajaj, I. Mukhopadhyay, A.B. Panda, Controlled synthesis of different morphologies of MgO and their use as solid base catalysts, J. Phys. Chem. C 115(25) (2011) 12308-12316. [21] Z. Ling, M. Zheng, Q. Du, Y. Wang, J. Song, W. Dai, L. Zhang, G. Ji, J. Cao, Synthesis of mesoporous MgO nanoplate by an easy solvothermal-annealing method, Solid State Sci. 13(12) (2011) 2073-2079. [22] H. Cui, X. Wu, Y. Chen, R.I. Boughton, Synthesis and characterization of mesoporous MgO by template-free hydrothermal method, Mater. Res. Bull. 50(2014) 307-311. [23] H.A.J. Van Dijk, S. Walspurger, P.D. Cobden, R.W. Van den Brink, F.G. De Vos, Testing of hydrotalcite-based sorbents for CO2 and H2S capture for use in sorption enhanced water gas shift, Int. J. Greenhouse Gas Control 5(3) (2011) 505-511. [24] A.W. Castleman, J.P. Toennies Jr., K. Yamanouchi, W. Zinth, Springer Series in Chemical Physics, Springer,Berlin, 2011. [25] V.K. Dıez, C.R. Apesteguıa, J.I. Di Cosimo, Effect of the chemical composition on the catalytic performance of MgyAlOx catalysts for alcohol elimination reactions, J. Catal. 215(2) (2003) 220-233. [26] D.R. Garg, D.M. Ruthven, Theoretical prediction of breakthrough curves for molecular sieve adsorption columns-I Asymptotic solutions, Chem. Eng. Sci. 28(3) (1973) 791-798. [27] I.A. Basheer, Y.M. Najjar, Predicting dynamic response of adsorption columns with neural nets, J. Comput. Civ. Eng. 10(1) (1996) 31-39. [28] S. Ghorai, K.K. Pant, Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina, Sep. Purif. Technol. 42(3) (2005) 265-271. [29] A.T. Vu, S. Jiang, K. Ho, J.B. Lee, C.H. Lee, Mesoporous magnesium oxide and its composites:Preparation, characterization, and removal of 2-chloroethyl ethyl sulfide, Chem. Eng. J. 269(2015) 82-93. |