[1] I. Monroy, K. Villez, M. Graells, V. Venkatasubramanian, Dynamic process monitoring and fault detection in a batch fermentation process:comparative performance assessment between MPCA and BDPCA, Comput. Aided Chem. Eng. 29(2) (2011) 1371-1375.[2] J. Wu, W. Luo, X. Wang, C. Qiang, C. Sun, H. Li, A new application of WT-ANN method to control the preparation process of metformin hydrochloride tablets by near infrared spectroscopy compared to PLS, J. Pharmaceut. Biomed. 80(3) (2013) 186-191.[3] C.K. Yoo, J.-M. Lee, P.A. Vanrolleghem, I.-B. Lee, On-line monitoring of batch processes using multiway independent component analysis, Chemometr. Intell. Lab. Syst. 71(2) (2004) 151-163.[4] S. Rannar, J.F. Macgregor, S. Wold, Adaptive batch monitoring using hierarchical PCA, Chemometr. Intell. Lab. Syst. 41(1) (1998) 73-81.[5] W. Ku, R.H. Storer, C. Georgakis, Disturbance detection and isolation by dynamic principal component analysis, Chemometr. Intell. Lab. Syst. 30(1) (1995) 179-196.[6] J. Chen, K.C. Liu, On-line batch process monitoring using dynamic PCA and dynamic PLS models, Chem. Eng. Sci. 57(1) (2002) 63-75.[7] J. Huang, X. Yan, Gaussian and non-Gaussian double subspace statistical process monitoring based on principal component analysis and independent component analysis, Ind. Eng. Chem. Res. 54(3) (2015) 1015-1027.[8] W. Zhu, J. Zhou, X. Xia, C. Li, J. Xiao, H. Xiao, X. Zhang, A novel KICA-PCA fault detection model for condition process of hydroelectric generating unit, Measurement 58(2014) 197-206.[9] S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science 290(5500) (2000) 2323-2326.[10] J.B. Tenenbaum, J.C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science 290(5500) (2000) 2319-2323.[11] M. Belkin, P. Niyogi, Laplacian Eigenmaps for dimensionality reduction and data representation, Neural Comput. 15(6) (2003) 1373-1396.[12] X. He, P. Niyogi, Locality preserving projections (LPP), Adv. Neural Inf. Proces. Syst. 45(1) (2005) 186-197.[13] K. Hu, J. Yuan, Statistical monitoring of fed-batch process using dynamic multiway neighborhood preserving embedding, Chemometr. Intell. Lab. Syst. 90(2) (2008) 195-203.[14] X. He, D. Cai, S. Yan, H.J. Zhang, Neighborhood preserving embedding, Tenth IEEE International Conference on Computer Vision, Beijing 2005, pp. 1208-1213.[15] M. Zhang, Z. Ge, Z. Song, R. Fu, Global-local structure analysis model and its application for fault detection and identification, Ind. Eng. Chem. Res. 50(11) (2011) 6837-6848.[16] J. Yu, Local and global principal component analysis for process monitoring, J. Process Control 22(7) (2012) 1358-1373.[17] X. Zhao, T. Wang, Batch process fault diagnosis based on TGNPE algorithm, CIESC J. 67(3) (2016) 1055-1062.[18] D.M.J. Tax, R.P.W. Duin, Support vector data description, Mach. Learn. 54(1) (2004) 45-66.[19] S. Ruixiang, T. Fugee, A kernel-distance-based multivariate control chart using support vector methods, Int. J. Prod. Res. 41(13) (2003) 2975-2989.[20] A.K. Choudhary, Kernel distance-based robust support vector methods and its application in developing a robust K-chart, Int. J. Prod. Res. 44(1) (2006) 77-96.[21] S. Thuntee, K. Seoung Bum, T. Fugee, One-class classification-based control charts for multivariate process monitoring, ⅡE Trans. 42(2) (2010) 107-120.[22] Z. Ge, L. Xie, U. Kruger, L. Lamont, Z. Song, S. Wang, Sensor fault identification and isolation for multivariate non-Gaussian processes, J. Process Control 19(10) (2009) 1707-1715.[23] Z. Ge, X. Lei, Z. Song, A novel statistical-based monitoring approach for complex multivariate processes, Ind. Eng. Chem. Res. 48(10) (2009) 4892-4898.[24] X. Liu, L. Xie, U. Kruger, T. Littler, S. Wang, Statistical-based monitoring of multivariate non-Gaussian systems, AIChE J. 54(9) (2008) 2379-2391.[25] X. Liu, K. Li, M. McAfee, G.W. Irwin, Improved nonlinear PCA for process monitoring using support vector data description, J. Process Control 21(9) (2011) 1306-1317.[26] D. Huang, T.W.S. Chow, Effective feature selection scheme using mutual information, Neurocomputing 63(2005) 325-343.[27] M. Han, W. Ren, X. Liu, Joint mutual information-based input variable selection for multivariate time series modeling, Eng. Appl. Artif. Intell. 37(2015) 250-257.[28] Q. Jiang, X. Yan, Plant-wide process monitoring based on mutual informationmultiblock principal component analysis, ISA Trans. 53(5) (2014) 1516-1527.[29] J. Huang, X. Yan, Related and independent variable fault detection based on KPCA and SVDD, J. Process Control 39(2016) 88-99.[30] S. Wold, N. Kettaneh, H. Friden, A. Holmberg, Modelling and diagnostics of batch processes and analogous kinetic experiments, Chemometr. Intell. Lab. Syst. 44(98) (2008) 331-340.[31] Y. Hui, X. Zhao, Multi-phase batch process monitoring based on multiway weighted global neighborhood preserving embedding method, J. Process Control 69(2018) 44-57.[32] Q. Chen, R.J. Wynne, P. Goulding, D. Sandoz, The application of principal component analysis and kernel density estimation to enhance process monitoring, Control. Eng. Pract. 8(5) (2000) 531-543.[33] S.T. Jawaid, S.L. Smith, Submodularity and greedy algorithms in sensor scheduling for linear dynamical systems, Automatica 61(2015) 282-288.[34] G. Birol, C. Undey, A. Cinar, A modular simulation package for fed-batch fermentation:penicillin production, Comput. Chem. Eng. 26(11) (2002) 1553-1565.[35] X. Zhao, T. Wang, Tensor dynamic neighborhood preserving embedding algorithm for fault diagnosis of batch process, Chemometr. Intell. Lab. Syst. 162(2017) 94-103.[36] X. Zhao, T. Wang, Y. Hui, MGNPE-LICA algorithm for fault diagnosis of batch process, Can. J. Chem. Eng. 94(10) (2016) 1947-1954.[37] C. Yang, J. Hou, Fed-batch fermentation penicillin process fault diagnosis and detection based on support vector machine, Neurocomputing 190(2016) 117-123. |