[1] J. Baldyga, J.R. Bourne, A fluid mechanical approach to turbulent mixing and chemical reaction part Ⅱ micromixing in the light of turbulence theory, Chem. Eng. Commun. 28(4-6) (1984) 243-258.[2] E.L. Paul, V.A. Atiemo-Obeng, S.M. Kresta, Handbook of Industrial Mixing:Science and Practice, John Wiley & Sons, USA, 2004.[3] P.V. Danckwerts, The effect of incomplete mixing on homogeneous reactions, Chem. Eng. Sci. 8(1-2) (1958) 93-102.[4] J.C. Cheng, X. Feng, D. Cheng, C. Yang, Retrospect and perspective of micro-mixing studies in stirred tanks, Chin. J. Chem. Eng. 20(1) (2012) 178-190.[5] O. Akiti, P.M. Armenante, Experimentally-validated micromixing-based CFD model for fed-batch stirred-tank reactors, AIChE J. 50(3) (2004) 566-577.[6] Y. Han, J.J. Wang, X.P. Gu, L.F. Feng, Numerical simulation on micromixing of viscous fluids in a stirred-tank reactor, Chem. Eng. Sci. 74(0) (2012) 9-17.[7] D.L. Marchisio, A.A. Barresi, CFD simulation of mixing and reaction:the relevance of the micro-mixing model, Chem. Eng. Sci. 58(16) (2003) 3579-3587.[8] Z. Wang, Q.H. Zhang, C. Yang, Z.S. Mao, X.Q. Shen, Simulation of barium sulfate precipitation using CFD and FM-PDF modeling in a continuous stirred tank, Chem. Eng. Technol. 30(12) (2007) 1642-1649.[9] J. Baldyga, M. Henczka, L. Makowski, Effect of mixing on parallel chemical reactions in a continuous-flow stirred-tank reactor, Chem. Eng. Res. Des. 79(8) (2001) 895-900.[10] J. Baldyga, L. Makowski, CFD modeling of mixing effects on the course of parallel chemical reactions carried out in a stirred tank, Chem. Eng. Technol. 27(3) (2004) 225-231.[11] L. Vicum, S. Ottiger, M. Mazzotti, L. Makowski, J. Baldyga, Multi-scale modeling of a reactive mixing process in a semibatch stirred tank, Chem. Eng. Sci. 59(8-9) (2004) 1767-1781.[12] R.O. Fox, Computational Models for Turbulent Reacting Flows, Cambridge University Press, Cambridge, 2003.[13] L. Wang, R.O. Fox, Comparison of micromixing models for CFD simulation of nanoparticle formation, AIChE J. 50(9) (2004) 2217-2232.[14] E. Gavi, L. Rivautella, D.L. Marchisio, M. Vanni, A.A. Barresi, G. Baldi, CFD modelling of nano-particle precipitation in confined impinging jet reactors, Chem. Eng. Res. Des. 85(5) (2007) 735-744.[15] E. Gavi, D.L. Marchisio, A.A. Barresi, On the importance of mixing for the production of nanoparticles, J. Dispers. Sci. Technol. 29(4) (2008) 548-554.[16] J. Sierra-Pallares, D.L. Marchisio, M.T. Parra-Santos, J. Garcia-Serna, F. Castro, M.J. Cocero, A computational fluid dynamics study of supercritical antisolvent precipitation:mixing effects on particle size, AIChE J. 58(2) (2012) 385-398.[17] Y. Liu, R.O. Fox, CFD predictions for chemical processing in a confined impinging-jets reactor, AIChE J. 52(2) (2006) 731-744.[18] E. Gavi, D.L. Marchisio, A.A. Barresi, CFD modelling and scale-up of confined impinging jet reactors, Chem. Eng. Sci. 62(8) (2007) 2228-2241.[19] D.L. Marchisio, Large eddy simulation of mixing and reaction in a confined impinging jets reactor, Comput. Chem. Eng. 33(2) (2009) 408-420.[20] V. Raman, H. Pitsch, R.O. Fox, Eulerian transported probability density function subfilter model for large-eddy simulations of turbulent combustion, Combust. Theor. Model. 10(3) (2006) 439-548.[21] R. Yadav, A. Kushari, V. Eswaran, A.K. Verma, A numerical investigation of the Eulerian PDF transport approach for modeling of turbulent non-premixed pilot stabilized flames, Combust. Flame 160(3) (2013) 618-634.[22] J. Lee, Y. Kim, Transported PDF approach and direct-quadrature method of moment for modeling turbulent piloted jet flames, J. Mech. Sci. Technol. 25(1) (2011) 3259-3265.[23] J. Akroyd, A.J. Smith, L.R. McGlashan, M. Kraft, Comparison of the stochastic fields method and DQMOM-IEM as turbulent reaction closures, Chem. Eng. Sci. 65(20) (2010) 5429-5441.[24] J. Akroyd, A.J. Smith, L.R. McGlashan, M. Kraft, Numerical investigation of DQMOMIEM as a turbulent reaction closure, Chem. Eng. Sci. 65(6) (2010) 1915-1924.[25] R.O. Fox, CFD models for analysis and design of chemical reactors, Adv. Chem. Eng. 31(2006) 231-305.[26] R.O. Fox, On the relationship between Lagrangian micro-mixing models and computational fluid dynamics, Chem. Eng. Process. 37(6) (1998) 521-535.[27] B.N. Murthy, J.B. Joshi, Assessment of standard k-ε, RSM and LES turbulence models in a baffled stirred vessel agitated by various impeller designs, Chem. Eng. Sci. 63(22) (2008) 5468-5495.[28] X.X. Duan, X. Feng, C. Yang, Z.S. Mao, Numerical simulation of micro-mixing in stirred reactors using the engulfment model coupled with CFD, Chem. Eng. Sci. 140(2) (2016) 179-188. |