[1] S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature 488(2012) 294-303. [2] T.N. Lavoie, P.B. Shepson, C.A. Gore, et al., Assessing the methane emissions from natural gas-fired power plants and oil refineries, Environ. Sci. Technol. 51(2017) 3373-3381. [3] C.Ö. Karacan, F.A. Ruiz, M. Cotè, et al., Coal mine methane:A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction, Int. J. Coal Geol. 86(2011) 121-156. [4] Z.Q. Yang, J.R. Grace, C.J. Lim, et al., Combustion of low-concentration coal bed methane in a fluidized bed, Energy Fuel 25(2011) 975-980. [5] R.T. Yang, Adsorbents:Fundamentals and Applications, John Wiley & Sons, 2003. [6] T.E. Rufford, S. Smart, G.C.Y. Watson, et al., The removal of CO2 and N2 from natural gas:A review of conventional and emerging process technologies, J. Pet. Sci. Eng. 94(2012) 123-154. [7] N. Heymans, B. Alban, S. Moreau, et al., Experimental and theoretical study of the adsorption of pure molecules and binary systems containing methane, carbon monoxide, carbon dioxide and nitrogen. Application to the syngas generation, Chem. Eng. Sci. 66(2011) 3850-3858. [8] V.P. Mulgundmath, F.H. Tezel, F. Hou, et al., Binary adsorption behaviour of methane and nitrogen gases, J. Porous. Mater. 19(2012) 455-464. [9] N.K. Jensen, T.E. Rufford, G. Watson, et al., Screening zeolites for gas separation applications involving methane, nitrogen, and carbon dioxide, J. Chem. Eng. Data 57(2011) 106-113. [10] J.A.C. Silva, A. Ferreira, P.A.P. Mendes, et al., Adsorption equilibrium and dynamics of fixed bed adsorption of CH4/N2 in binderless beads of 5A zeolite, Ind. Eng. Chem. Res. 54(2015) 6390-6399. [11] S.J. Bhadra, S. Farooq, Separation of methane-nitrogen mixture by pressure swing adsorption for natural gas upgrading, Ind. Eng. Chem. Res. 50(2011) 14030-14045. [12] T.E. Rufford, G.C.Y. Watson, T.L. Saleman, et al., Adsorption equilibria and kinetics of methane-nitrogen mixtures on the activated carbon Norit RB3, Ind. Eng. Chem. Res. 52(2013) 14270-14281. [13] D.S. Yuan, Y.N. Zheng, Q.Z. Li, et al., Effects of pore structure of prepared coal-based activated carbons on CH4 enrichment from low concentration gas by IAST method, Powder Technol. 333(2018) 377-384. [14] Y. Zhang, W. Su, Y. Sun, et al., Adsorption equilibrium of N2, CH4, and CO2 on MIL-101, J. Chem. Eng. Data 60(2015) 2951-2957. [15] X. Peng, X. Cheng, D.P. Cao, Computer simulations for the adsorption and separation of CO2/CH4/H2/N2 gases by UMCM-1 and UMCM-2 metal organic frameworks, J. Mater. Chem. 21(2011) 11259-11270. [16] B. Liu, B. Smit, Molecular simulation studies of separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs, J. Phys. Chem. C 114(2010) 8515-8522. [17] X.Q. Wang, L.B. Li, J.F. Yang, et al., CO2/CH4 and CH4/N2 separation on isomeric metal organic frameworks, Chin. J. Chem. Eng. 24(2016) 1687-1694. [18] J. McEwen, J.D. Hayman, A.O. Yazaydin, A comparative study of CO2, CH4 and N2 adsorption in ZIF-8, zeolite-13X and BPL activated carbon, Chem. Phys. 412(2013) 72-76. [19] Z.J. Zhang, Z.Z. Yao, S.C. Xiang, et al., Perspective of microporous metal-organic frameworks for CO2 capture and separation, Energy Environ. Sci. 7(2014) 2868-2899. [20] B. Liu, B. Smit, Comparative molecular simulation study of CO2/N2 and CH4/N2 separation in zeolites and metal-organic frameworks, Langmuir 25(2009) 5918-5926. [21] D. Saha, Z.B. Bao, F. Jia, et al., Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A, Environ. Sci. Technol. 44(2010) 1820-1826. [22] S. Sircar, Basic research needs for design of adsorptive gas separation processes, Ind. Eng. Chem. Res. 45(2006) 5435-5448. [23] Y.J. Xu, Y. Huang, B. Wu, et al., Biogas upgrading technologies:Energetic analysis and environmental impact assessment, Chin. J. Chem. Eng. 23(2015) 247-254. [24] B.P.C. Hereijgers, F. Bleken, M.H. Nilsen, et al., Product shape selectivity dominates the Methanol-to-Olefins (MTO) reaction over H-SAPO-34 catalysts, J. Catal. 264(2009) 77-87. [25] J.V. Smith, Crystal structures with a chabazite framework. I. Dehydrated Cachabazite, Acta Crystallogr. 15(1962) 835-845. [26] C.G. Saxton, A. Kruth, M. Castro, et al., Xenon adsorption in synthetic chabazite zeolites, Microporous Mesoporous Mater. 129(2010) 68-73. [27] A. Bakhtyari, M. Mofarahi, Pure and binary adsorption equilibria of methane and nitrogen on zeolite 5A, J. Chem. Eng. Data 59(2014) 626-639. [28] M. Mofarahi, A. Bakhtyari, Experimental investigation and thermodynamic modeling of CH4/N2 adsorption on zeolite 13X, J. Chem. Eng. Data 60(2015) 683-696. [29] T. Inui, M. Kang, Reliable procedure for the synthesis of Ni-SAPO-34 as a highly selective catalyst for methanol to ethylene conversion, Appl. Catal. A Gen. 164(1997) 211-223. [30] R.F. Zhou, E.W. Ping, H.H. Funke, et al., Improving SAPO-34 membrane synthesis, J. Membr. Sci. 444(2013) 384-393. [31] M.R. Hudson, W.L. Queen, J.A. Mason, et al., Unconventional, highly selective CO2 adsorption in zeolite SSZ-13, J. Am. Chem. Soc. 134(2012) 1970-1973. [32] C. Baerlocher, L.B. McCusker, D.H. Olson, Atlas of Zeolite Framework Types, Elsevier, Amsterdam, 2007. [33] T.D. Pham, Q. Liu, R.F. Lobo, Carbon dioxide and nitrogen adsorption on cationexchanged SSZ-13 zeolites, Langmuir 29(2013) 832-839. [34] F.N. Ridha, P.A. Webley, Entropic effects and isosteric heats of nitrogen and carbon dioxide adsorption on chabazite zeolites, Microporous Mesoporous Mater. 132(2010) 22-30. [35] Y.W. Luo, H.H. Funke, J.L. Falconer, et al., Adsorption of CO2, CH4, C3H8, and H2O in SSZ-13, SAPO-34, and T-type zeolites, Ind. Eng. Chem. Res. 55(2016) 9749-9757. [36] M. Salmasi, S. Fatemi, M.D. Rad, et al., Study of carbon dioxide and methane equilibrium adsorption on silicoaluminophosphate-34 zeotype and T-type zeolite as adsorbent, Int. J. Environ. Sci. Technol. 10(2013) 1067-1074. [37] M.E. Rivera-Ramos, G.J. Ruiz-Mercado, A.J. Hernández-Maldonado, Separation of CO2 from light gas mixtures using ion-exchanged silicoaluminophosphate nanoporous sorbents, Ind. Eng. Chem. Res. 47(2008) 5602-5610. [38] J.F. Yang, Q. Zhao, H. Xu, et al., Adsorption of CO2, CH4, and N2 on gas diameter grade ion-exchange small pore zeolites, J. Chem. Eng. Data 57(2012) 3701-3709. [39] J.F. Yang, R. Krishna, J.M. Li, et al., Experiments and simulations on separating a CO2/CH4 mixture using K-KFI at low and high pressures, Microporous Mesoporous Mater. 184(2014) 21-27. [40] J.F. Yang, J.M. Li, W. Wang, et al., Adsorption of CO2, CH4, and N2 on 8-, 10-, and 12-membered ring hydrophobic microporous high-silica zeolites:DDR, silicalite-1, and beta, Ind. Eng. Chem. Res. 52(2013) 17856-17864. [41] M. Muttakin, S. Mitra, K. Thu, et al., Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms, Int. J. Heat Mass Transf. 122(2018) 795-805. [42] K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984), Pure Appl. Chem. 57(1985) 603-619. [43] J. Yang, H. Shang, R. Krishna, et al., Adjusting the proportions of extra-framework K+ and Cs+ cations to construct a "molecular gate" on ZK-5 for CO2 removal, Microporous Mesoporous Mater. 268(2018) 50-57. [44] S.G. Chen, R.T. Yang, Theoretical basis for the potential theory adsorption isotherms. The Dubinin-Radushkevich and Dubinin-Astakhov equations, Langmuir 10(1994) 4244-4249. [45] R. Sips, On the structure of a catalyst surface, J. Chem. Phys. 16(1948) 490-495. [46] V.P. Mulgundmath, F.H. Tezel, T. Saatcioglu, et al., Adsorption and separation of CO2/N2 and CO2/CH4 by 13X zeolite, Can. J. Chem. Eng. 90(2012) 730-738. [47] A.L. Myers, J.M. Prausnitz, Thermodynamics of mixed-gas adsorption, AICHE J. 11(1965) 121-127. |