[1] T. Kavitha, S. Kumar, Turning date palm fronds into biocompatible mesoporous fluorescent carbon dots, Sci. Rep. 8(1) (2018) 1-10. [2] M.C. Ortega-Liebana, et al., Uniform luminescent carbon nanodots prepared by rapid pyrolysis of organic precursors confined within nanoporous templating structures, Carbon N. Y. 117(2017) 437-446. [3] P. Shen, J. Gao, J. Cong, Z. Liu, C. Li, J. Yao, Synthesis of cellulose-based carbon dots for bioimaging, ChemistrySelect 1(7) (2016) 1314-1317. [4] S.S. Wee, Y.H. Ng, S.M. Ng, Synthesis of fluorescent carbon dots via simple acid hydrolysis of bovine serum albumin and its potential as sensitive sensing probe for lead (II) ions, Talanta 116(2013) 71-76. [5] L. Rao, Y. Tang, H. Lu, S. Yu, X. Ding, K. Xu, Z. Li, J.Z. Zhang, Highly Photoluminescent and Stable N-Doped Carbon Dots as Nanoprobes for Hg2+ Detection, Nanomaterials 8(2018) 900. [6] S. Buda, S. Shafie, S.A. Rashid, H. Jaafar, A. Khalifa, Response surface modeling of photogenerated charge collection of silver-based plasmonic dye-sensitized solar cell using central composite design experiments, Results Phys. 7(2017) 493-497. [7] J.R. Lakowicz, in:Joseph R. Lakowicz (Ed.), Principles of Fluorescence Spectroscopy, 2nd edition, Anal. Biochem., 287(2), 2000, pp. 353-354. [8] H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, X. Yang, Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties, Chem. Commun. 34(2009) 5118-5120. [9] A. Sachdev, I. Matai, P. Gopinath, Implications of surface passivation on physicochemical and bioimaging properties of carbon dots, RSC Adv. 4(40) (2014) 20915-20921. [10] S.K. Behera, H. Meena, S. Chakraborty, B.C. Meikap, Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal, Int. J. Min. Sci. Technol. 28(4) (2018) 621-629. [11] C. Song, X. Li, L. Wang, W. Shi, Fabrication, characterization and response surface method (RSM) optimization for tetracycline, Nat. Publ. Group (November) (2016) 1-12. [12] J.P.C. Kleijnen, Response surface methodology, Int. Ser. Oper. Res. Manag. Sci. 216(2015) 81-104. [13] T.N.J.I. Edison, R. Atchudan, J.J. Shim, S. Kalimuthu, B.C. Ahn, Y.R. Lee, Turn-off fluorescence sensor for the detection of ferric ion in water using green synthesized Ndoped carbon dots and its bio-imaging, J. Photochem. Photobiol. B Biol. 158(March) (2016) 235-242. [14] M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta 76(5) (2008) 965-977. [15] C.J. Reckmeier, J. Schneider, A.S. Susha, A.L. Rogach, Luminescent colloidal carbon dots:Optical properties and effects of doping[invited], Opt. Express 24(2) (2016) A312. [16] M. Sevilla, A.B. Fuertes, The production of carbon materials by hydrothermal carbonization of cellulose, Carbon N. Y. 47(9) (2009) 2281-2289. [17] K. Yu, J. Wang, K. Song, X. Wang, C. Liang, Y. Dou, Hydrothermal synthesis of cellulose-derived carbon nanospheres from corn straw as anode materials for lithium ion batteries, Nanomaterials 9(1) (2019) 93. [18] E. García-Bordejé, E. Pires, J.M. Fraile, Parametric study of the hydrothermal carbonization of cellulose and effect of acidic conditions, Carbon N. Y. 123(2017) 421-432. [19] R. Li, L. Wang, A. Shahbazi, A review of hydrothermal carbonization of carbohydrates for carbon spheres preparation, Trends Renew. Energy 1(1) (2015) 43-56. [20] C. Falco, N. Baccile, M.M. Titirici, Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons, Green Chem. 13(11) (2011) 3273-3281. [21] N.R. Pires, C.M.W. Santos, R.R. Sousa, R.C.M. De Paula, P.L.R. Cunha, J.P.A. Feitosa, Novel and fast microwave-assisted synthesis of carbon quantum dots from raw cashew gum, J. Braz. Chem. Soc. 26(6) (2015) 1274-1282. [22] W.J. Niu, Y. Li, R.H. Zhu, D. Shan, Y.R. Fan, X.J. Zhang, Ethylenediamine-assisted hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for sensitive biosensing and bioimaging, Sensors Actuators B Chem. 218(2015) 229-236. [23] A. Schmidt, M. Schneiders, M. Döpfner, G. Lehmkuhl, Störungskonzepte für psychische probleme bei Jugendlichen. Pilotstudie zur validierung eines fragebogens zu störungskonzepten bei psychischen problemen von Jugendlichen (SSPJ), Z. Kinder. Jugendpsychiatr. Psychother. 31(2) (2003) 111-121. [24] Y. Zheng, et al., A facile approach for the synthesis of highly luminescent carbon dots using vitamin-based small organic molecules with benzene ring structure as precursors, RSC Adv. 5(110) (2015) 90245-90254. [25] Y. Dong, J. Cai, Y. Chi, Based Dots and Their Luminescent Properties and Analytical Applications, in:N. Yang, X. Jiang, DW. Pang (Eds.), Carbon Nanoparticles and Nanostructures. Carbon Nanostructures, Springer, Cham 2016, pp. 161-238. [26] T. Pal, et al., Effect of nitrogen atom positioning on the trade-off between emissive and photocatalytic properties of carbon dots, Nat. Commun. 8(1) (2017) 1-9. [27] Z. Liang, L. Zeng, X. Cao, Q. Wang, X. Wang, R. Sun, Sustainable carbon quantum dots from forestry and agricultural biomass with amplified photoluminescence by simple NH4OH passivation, J. Mater. Chem. C 2(45) (2014) 9760-9766. [28] W. Liu, H. Diao, H. Chang, H. Wang, T. Li, W. Wei, Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging, Sensors Actuators B Chem. 241(2017) 190-198. [29] P. Wu, W. Li, Q. Wu, Y. Liu, S. Liu, Hydrothermal synthesis of nitrogen-doped carbon quantum dots from microcrystalline cellulose for the detection of Fe3+ ions in an acidic environment, RSC Adv. 7(70) (2017) 44144-44153. [30] J. Liu, X. Liu, H. Luo, Y. Gao, One-step preparation of nitrogen-doped and surfacepassivated carbon quantum dots with high quantum yield and excellent optical properties, RSC Adv. 4(15) (2014) 7648. [31] R. Wang, X. Wang, Y. Sun, One-step synthesis of self-doped carbon dots with highly photoluminescence as multifunctional biosensors for detection of iron ions and pH, Sensors Actuators B Chem. 241(2017) 73-79. [32] A. Sachdev, P. Gopinath, Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents, Analyst 140(12) (2015) 4260-4269. [33] H. Ding, J.S. Wei, P. Zhang, Z.Y. Zhou, Q.Y. Gao, H.M. Xiong, Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths, Small 14(22) (2018) 1-10. [34] A. Barati, M. Shamsipur, E. Arkan, L. Hosseinzadeh, H. Abdollahi, Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime:Analytical applications and optimization using response surface methodology, Mater. Sci. Eng. C 47(July) (2015) 325-332. [35] Y. Wang, Y. Zhu, S. Yu, C. Jiang, Fluorescent carbon dots:Rational synthesis, tunable, RSC Adv. 7(2017) 40973-40989. [36] C. Yang, et al., Nitrogen-doped carbon dots with excitation-independent longwavelength emission produced by a room-temperature reaction, Chem. Commun. 52(80) (2016) 11912-11914. [37] V. Arul, M.G. Sethuraman, Facile green synthesis of fluorescent N-doped carbon dots from Actinidia deliciosa and their catalytic activity and cytotoxicity applications, Opt. Mater. (Amst). 78(February) (2018) 181-190. [38] D. Gu, S. Shang, Q. Yu, J. Shen, Green synthesis of nitrogen-doped carbon dots from lotus root for Hg(II) ions detection and cell imaging, Appl. Surf. Sci. 390(Ii) (2016) 38-42. |