[1] D.N. Tran, K.J. Balkus, Perspective of recent progress in immobilization of enzymes, ACS Catal. 1(2011) 956-968. [2] F. Jia, S.K. Mallapragad, B. Narasimhan, Multienzyme immobilization and colocalization on nanoparticles enabled by DNA hybridization, Ind. Eng. Chem. Res. 54(2015) 10212-10220. [3] M. Wanger, J.A. Nicell, Detoxification of phenolic solutions with horseradish peroxidase and hydrogen peroxide, Water Res. 36(2002) 4041-4052. [4] B.J. Ryan, N. Carolan, C. Fagain, Horseradish and soybean peroxidases:comparable tools for alternative niches? Biotechnology 24(2006) 355-363. [5] L. Duroux, K.G. Welinder, The peroxidase gene family in plants:A phylogenetic overview, J. Mol. Evol. 57(2003) 397-407. [6] N.C. Veitch, Horseradish peroxidase:a modern view of a classic enzyme, Phytochemistry 65(2004) 249-259. [7] R. Krieg, K. Halbhuber, Detection of endogenous and immuno-bound peroxidase-The status quo in histochemistry, Histochem and Cytochem 45(2010) 81-139. [8] S.M. Conyers, D.A. Kidwell, Chromogenic substrates for horseradish peroxidase, Anal. Biochem. 192(1991) 207-211. [9] K.H. Petersen, Novel horseradish peroxidase substrates for use in immunohistochemistry, J. Immunol. Methods 340(2009) 86-89. [10] S. Fornera, P. Walde, Spectrophotometric quantification of horseradish peroxidase with o-phenylenediamine, Anal. Biochem. 407(2010) 293-295. [11] H. Akhavan-Tafti, R. Silva, R. Eickholt, R. Handley, M. Mazelis, M. Sandison, Characterization of new fluorescent peroxidase substrates, Talanta 60(2003) 345-354. [12] Y. Zhang, J. Ge, Z. Liu, Enhanced activity of immobilized or chemically modified enzymes, ACS Catal. 5(2015) 4503-4513. [13] L.Z. Gao, J. Zhuang, J.L. Nie, J.B. Zhang, Y. Zhang, N. Gu, T.H. Wang, J. Feng, D.L. Yang, S. Perrett, X. Yan, Intrinsic peroxidase-like activity of ferromagnetic nanoparticles, Nat. Nanotechnol. 2(2007) 577-583. [14] B. Wang, P. Ju, D. Zhang, X. Han, L. Zheng, X. Yin, C. Sun, Colorimetric detection of H2O2 using flower-like Fe2(MoO4)3 microparticles as a peroxidase mimic, Microchim. Acta 183(2016) 3025-3033. [15] R. Li, M. Zhen, M. Guan, D. Chen, G. Zhang, J. Ge, P. Gong, C. Wang, C. Shu, A novel glucose colorimetric sensor based on intrinsic peroxidase-like activity of C60-carboxyfullerenes, Biosens. Bioelectron. 47(2013) 502-507. [16] Q. Liu, H. Li, Q. Zhao, R. Zhu, Y. Yang, Q. Jia, B. Bian, L. Zhuo, Glucose-sensitive colorimetric sensor based on peroxidase mimics activity of porphyrin-Fe3O4 nanocomposites, Mater. Sci. Eng. 41(2014) 142-151. [17] S. Tabassuma, T.H. Kumara, J.P. Jasinski, S.P. Millikan, H.S. Yathirajan, P.S. Ganapathy, H.B.V. Sowmya, S.S. More, G. Nagendrapp, Synthesis, crystal structure, ABTS radical-scavenging activity, antimicrobial and docking studies of some novel quinoline derivatives, Molecular Structure 1070(2014) 10-20. [18] W. Qin, L. Su, C. Yang, Y. Ma, H. Zhang, X. Chen, Colorimetric detection of sulfite in foods by a TMB-O2-Co3O4 nanoparticles detection system, J. Agric. Food Chem. 62(2014) 5827-5834. [19] S. Qian, H. Lin, Colorimetric sensor array for detection and identification of organophosphorus and carbamate pesticides, Anal. Chem. 87(2015) 5395-5400. [20] Y. Wang, J. Hu, Q. Zhuang, Y. Ni, Enhancing sensitivity and selectivity in a label-free colorimetric sensor for detection of iron(II) ions with luminescent molybdenum disulfide nanosheet-based peroxidase mimetics, Biosens. Bioelectron. 80(2016) 111-117. [21] Y. Hu, L. Chen, H. Jung, Y. Zeng, S. Lee, K.M. Swamy, X. Zhou, M.H. Kim, J. Yoon, Effective strategy for colorimetric and fluorescence sensing of phosgene based on small organic dyes and nanofiber platforms, ACS Appl. Mater. Interfaces 34(2016) 22246-22252. [22] C. Chen, D. Zhao, L. Lu, X. Yang, A simple and rapid colorimetric sensor for sulfide anion detection based on redox reaction of ABTS with Au (III), Sensors Actuators B Chem. 220(2015) 1247-1253. [23] N. Ding, N. Yan, C. Ren, X. Chen, Colorimetric determination of melamine in dairy products by Fe3O4 magnetic nanoparticles-HP-ABTS detection system, Anal. Chem. 82(2010) 5897-5899. [24] F. Liu, F.J. Zhang, R. Chen, L. Chen, L. Deng, Highly effective colorimetric and visual detection of ATP by a DNAzyme-aptamer sensor, Chem. Biodivers. 8(2011) 311-316. [25] D. Chang, S. Zakaria, M. Deng, N. Allen, K. Tram, Y. Li, Integrating deoxyribozymes into colorimetric sensing platforms, Sensors 16(2016) 2061-2067. [26] T. Li, S. Dong, E. Wang, Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulatedG-quadruplex-based DNAzyme, Anal. Chem. 81(2009) 2144-2149. [27] D.M. Kong, N. Wang, N.X.X. Guo, H.X. Shen, ‘Turn-on’ detection of Hg2+ ion using a peroxidase-like split G-quadruplex-hemin DNAzyme, Analyst 135(2010) 545-549. [28] X.H. Zhou, D.M. Kong, H.X. Shen, G-quadruplex-hemin DNAzyme-amplified colorimetric detection of Ag+ ion, Anal. Chim. Acta 678(2010) 124-127. [29] Y. Dotsikas, Y.L. Loukas, Employment of 4-(1-imidazolyl) phenol as a luminol signal enhancer in a competitive type chemiluminescence immunoassay and its comparison with the conventional antigen-horseradish peroxidase conjugate-based assay, Anal. Chim. Acta 509(2004) 103-109. [30] E.Y. Pisarevskaya, E.V. Ovsyannikova, L.P. Kazanskii, N.M. Alpatova, Iron tetrasulfophthalocyanine as catalyst of o-phenylenediamine (OPD) oxidation with molecular oxygen, Russ. J. Electrochem. 46(2010) 1042-1046. [31] P. Ni, Y. Sun, H. Dai, J. Hu, S. Jiang, Y. Wang, Z. Li, Highly sensitive and selective colorimetric detection of glutathione based on Ag[I] ion-3,3',5,5'-tetramethylbenzidine (TMB), Biosens. Bioelectron. 63(2015) 47-52. [32] J. Dong, L. Song, J. Yin, W. He, Y. Wu, N. Gu, Y. Zhang, Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay, ACS Appl. Mater. Interfaces 6(2014) 1959-1970. [33] X. Fang, X. Wu, X. Hu, Z. Li, G. Wang, Native carbon nanodots as a fluorescent probe for assays based on the use of glucose oxidase or horseradish peroxidase, Microchim. Acta 183(2016) 2761-2770. [34] L.A. Marquez, H. Brian Dunford, Mechanism of the oxidation of 3,5,3',5'-tetramethylbenzidine by myeloperoxidase determined by transient and steadystate kinetics, Biochemistry 36(1997) 9349-9355. [35] H. Liu, Z. Wang, Y. Liu, J. Xiao, C. Wang, Enthalpy change and mechanism of oxidation of o-phenylenediamine by hydrogen peroxide catalyzed by horseradish peroxidase, Thermochim. Acta 443(2006) 173-178. [36] K. Jiao, G. Sun, S. Zhang, Enzyme-catalyzed reaction of OPD-HP-HRP voltammetric enzyme-linked immunoassay system, Science in China 40(1998) 345-352. [37] C.R. Taylor, L. Rudbeck, Immunohistochemical staining methods, Dako Denmark A/S, Sixth editionAn Agilent Technologies Company, Copyright 2013. [38] H.F. Qian, W. Huang, Biphenyl-3,3,4,4-tetra-amine, Acta Crystallogr Sect E Struct. 66(2010) 1060, https://doi.org/10.1107/S1600536810012511. [39] B. Quinn, A.M. Graybiel, A differentiated silver intensification procedure for the p9eroxidase-diaminobenzidine reaction, Histochem. Cytochem. 44(1996) 71-74. [40] I. Ender Mulazimoglu, A. Demir Mulazimoglu, E. Yilmaz, Determination of quantitative phenol in tap water samples as electrochemical using 3,3-diaminobenzidine modified glassy carbon sensor electrode, Desalination 268(2011) 227-232. [41] X. Wang, Y. Hu, H. Wei, Nanozymes in bionanotechnology:From sensing to therapeutics and beyond, norg, Chem. Front. 3(2016) 41-60. [42] L.L. Wu, L.Y. Wang, Z.J. Xie, N. Pan, C.F. Peng, Colorimetric assay of l-cysteine based on peroxidase-mimicking DNA-Ag/Pt nanoclusters, Sensors Actuators B 235(2016) 110-116. [43] X. Zhang, X. Bi, W. Di, W. Qin, A simple and sensitive Ce(OH)CO3/H2O2/TMB reaction system for colorimetric determination of H2O2 and glucose, Sensors Actuators B 231(2016) 714-722. [44] K. Yin, B. Li, X. Wang, W. Zhang, L. Chen, Ultrasensitive colorimetric detection of Cu2+ ion based on catalytic oxidation of L-cysteine, Biosens. Bioelectron. 64(2015) 81-87. [45] J. Mu, L. Zhang, M. Zhao, Y. Wang, Co3O4 nanoparticles as an efficient catalase mimic:Properties, mechanism and its electrocatalytic sensing application for hydrogen peroxide, Molecular Catalysis A:Chemical 378(2013) 30-37. [46] X. Liu, Q. Wang, Y. Zhang, L. Zhang, Y. Sub, Y. Lv, Colorimetric detection of glutathione in human blood serum based on the reduction of oxidized TMB, New J. Chem. 37(2013) 2174-2178. [47] A. Kumar Dutta, S. Das, S. Samanta, P. Kumar Samanta, B. Adhikary, P. Biswas, CuS nanoparticles as a mimic peroxidase for colorimetric estimation of human blood glucose level, Talanta 107(2013) 361-367. [48] G.X. Cao, X.M. Wu, Y.M. Dong, Z.J. Li, G.L. Wang, In situ enzymatically generated photoswitchable oxidase mimetics and their application for colorimetric detection of glucose oxidase, Molecules 21(2016) 1-10. [49] Y. Jv, B.X. Li, R. Cao, Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection, Chem. Commun. 46(2010) 8017-8019. [50] W.B. Shi, Q.L. Wang, Y.J. Long, Z.L. Cheng, S.H. Chen, H.Z. Zheng, Carbon nanodots as peroxidase mimetics and their applications to glucose detection, Chem. Commun. 47(2011) 6695-6697. [51] H.F. Lu, J.Y. Li, M.M. Zhang, D. Wu, Q.L. Zhang, A highly selective and sensitive colorimetric uric acid biosensor based on Cu(II)-catalyzed oxidation of 3,3,5,5-tetramethylbenzidine, Sensors Actuators B 244(2017) 77-83. [52] S. Piermarini, D. Migliorelli, G. Volpe, R. Massoud, A. Pierantozzi, C. Cortese, G. Palleschi, Uricase biosensor based on a screen-printed electrode modified with Prussian blue for detection of uric acid in human blood serum, Sensors and Actuators B-Chem. 179(2013) 170-174. [53] N.E. Azmi, N.I. Ramli, J. Abdullah, M.A.A. Hamid, H. Sidek, S.A. Rahman, N.A. Yusof, A simple and sensitive fluorescence based biosensor for the determination of uric acid using H2O2-sensitive quantum dots/dual enzymes, Biosens. Bioelectron. 67(2015) 129-133. [54] F. Qiao, J. Wang, S. Ai, L. Li, A new peroxidase mimetics:the synthesis of selenium doped graphitic carbon nitride nanosheets and applications on colorimetric detection of H2O2 and xanthine, Sens. Actuators B-Chem. 216(2015) 418-427. [55] N.R. Nirala, S. Abraham, V. Kumar, A. Bansal, A. Srivastava, P.S. Saxena, Colorimetric detection of cholesterol based on highly efficient peroxidase mimetic activity of graphene quantum dots, Sens. Actuators B-Chem. 218(2015) 42-50. [56] R. Li, C. Xiong, Z. Xiao, L. Ling, Colorimetric detection of cholesterol with Gquadruplex-based DNAzymes and ABTS2-, Anal. Chim. Acta 724(2012) 80-85. [57] H. Lin, K.S. Suslick, A colorimetric sensor array for detection of triacetone triperoxide vapor, J. Am. Chem. Soc. 132(2010) 15519-15521. [58] R. Schulte-Ladbeck, P. Kolla, U. Karst, A field test for the detection of peroxidebased explosives, Analyst 127(2002) 1152-1154. [59] Z. Can, A. Uzer, K. Turkekul, E. Erçag, R. Apak, Determination of Triacetone Triperoxide (TATP) with a N,N-dimethyl-p-phenylene diamine (DMPD) sensor on nafion using Fe3O4 magnetic nanoparticles, Anal. Chem. 87(2015) 9589-9594. [60] A. Uzer, S. Durmaze, E. Ercag, R. Apak, Determination of hydrogen peroxide and triacetone triperoxide (TATP) with a silver nanoparticles-Based turn-on colorimetric sensor, Sensors Actuators B 247(2017) 98-107. [61] N. Bagheri, A. Khataee, J. Hassanzadeh, B. Habibi, Visual detection of peroxidebased explosives using novel mimetic Ag nanoparticle/ZnMOF nanocomposite, Hazard. Mater. 360(2018) 233-242. [62] N. Bagheri, M. Dastborhan, A. Khataeeab, J. Hassanzadeh, M. Kobya, Synthesis of gC3N4@CuMOFs nanocomposite with superior peroxidase mimetic activity for the fluorometric measurement of glucose, Spectrochim. Acta A Mol. Biomol. Spectrosc. 213(2019) 28-36. [63] H.H. Deng, G.L. Hong, F.L. Lin, A.L. Liu, X.H. Xia, W. Chen, Colorimetric detection of urea, urease, and urease inhibitor based on the peroxidase-like activity of gold nanoparticles, Anal. Chim. Acta 915(2016) 74-80. [64] J. Hubalek, J. Hradecky, V. Adam, O. Krystofova, D. Huska, M. Masarik, L. Trnkova, A. Horna, K. Klosova, M. Adamek, J. Zehnalek, R. Kizek, Spectrometric and voltammetric analysis of urease-nickel nanoelectrode as an electrochemical sensor, Sensors 7(2007) 1238-1255. [65] Z. Lin, Y. Xiao, L. Wang, Y. Yin, J. Zheng, H. Yang, G. Chen, Facile synthesis of enzyme-inorganic hybrid nanoflowers and their application as an immobilized trypsin reactor for highly efficient protein digestion, RSC Adv. 4(2014) 13888-13891. [66] Y. Huang, X. Ran, Y. Lin, J. Ren, X. Qu, Self-assembly of an organic-inorganic hybrid nanoflower as an efficient biomimetic catalyst for self-activated tandem reactions, Chem. Commun. 51(2015) 4386-4389. [67] Y. Lvov, A. Antipov, A. Mamedov, H. Möhwald, G. Sukhorukov, Urease encapsulation in nanoorganized microshells, Nano Lett. 1(2001) 125-128. [68] Y. Wang, F. Caruso, Enzyme encapsulation in nanoporous silica spheres, Chem. Commun., 0(2004) 1528-1529. [69] P. Li, S. Moon, M. Guelta, S. Harvey, J. Hupp, O. Farha, Encapsulation of a nerve agent detoxifying enzyme by a mesoporous zirconium metal-organic framework engenders thermal and long-term stability, J. Am. Chem. Soc. 138(2016) 8052-8055. [70] Y. Chen, V. Lykourinou, C. Vetromile, T. Hoang, L.J. Ming, R.W. Larsen, S. Ma, How Can proteins enter the interior of a MOF? Investigation of cytochrome c translocation into a MOF consisting of mesoporous cages with microporous windows, J. Am. Chem. Soc. 134(2012) 13188-13191. [71] S. Cao, D. Yue, X. Li, T.J. Smith, N. Li, M. Zong, H. Wu, Y. Ma, W. Lou, Novel nano-/micro-biocatalyst:Soybean epoxide hydrolase immobilized on UiO-66-NH2 MOF for efficient biosynthesis of enantiopure (R)-1, 2-octanediol in deep eutectic solvents, ACS Sustain. Chem. Eng. 4(2016) 3586-3595. [72] K. Liang, C.J. Coghlan, S.G. Bell, C. Doonan, P. Falcaro, Enzyme encapsulation in zeolitic imidazolate frameworks:A comparison between controlled co-precipitation and biomimetic mineralisation, Chem. Commun. 52(2016) 473-476. [73] K. Liang, J. Cui, F. Caruso, C.J. Doonan, P. Falcaro, Metal-organic Framework Coatings as Cytoprotective Exoskeletons for Living Cells, 28, 20167910-7914. [74] Y. Wang, C. Hou, Y. Zhang, F. He, M. Liu, X. Li, Preparation of graphene nanosheet bonded PDA/MOF microcapsules with immobilized glucose oxidase as a mimetic multi-enzyme system for electrochemical sensing of glucose, J. Mater. Chem. B 4(2016) 3695-3702. [75] C. Hou, Y. Wang, Q. Ding, L. Jiang, M. Li, W. Zhu, D. Pan, H. Zhu, M. Liu, Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system:mimetic peroxidase properties and colorimetric sensor, Nanoscale 7(2015) 18770-18779. [76] H. Liang, S. Jiang, Q. Yuan, G. Li, F. Wang, Z. Zhang, J. Liu, Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers:Improved stability and an enzyme cascade for glucose detection, Nanoscale 8(2016) 6071-6078. [77] C. Altinkaynak, S. Tavlasoglu, N. Özdemir, I. Ocsoy, A new generation approach in enzyme immobilization:Organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability, Enzym. Microb. Technol. 93(2014) 105-112. [78] J. Sun, J. Ge, W. Liu, M. Lan, H. Zhang, P. Wang, Y. Wang, Z. Niu, Multi-enzymecoembeddedorganic-inorganic hybrid nanoflowers:Synthesis and application in colorimetric sensor, Nanoscale 6(2014) 255-262. [79] J. Wang, G. Zhang, Progress in co-immobilization of multiple enzymes, Sheng Wu Gong Cheng Xue Bao 31(2015) 469-480. [80] F. Jia, B. Narasimhan, S. Mallapragad, Materials-based strategies for multi-enzyme immobilization and co-localization:A review, Biotechnol. Bioeng. 111(2014) 209-222. [81] F. Jia, S. Mallapragada, B. Narasimhan, Biomimetic multi-enzyme complexes based on nanoscale platforms, AIChE J. 59(2013) 355-360. [82] X. Wu, J. Ge, C. Yang, M. Hou, Z. Liu, Facile synthesis of multiple enzyme-contained metal-organic frameworks, biomolecule-friendly environment, Chem. Commun. 51(2015) 13408-13411. [83] L. Han, H. Zhang, D. Chen, F. Li, Protein-directed metal oxide nanoflakes with tandem enzyme-like characteristics:Colorimetric glucose sensing based on onepotenzyme-free cascade catalysis, Adv. Funct. Mater. 28(2018) 1800018. [84] Q. Wang, Qingqing, H. Wei, Z. Zhang, E. Wang, S. Dong, Nanozyme:An emerging alternative to natural enzyme for biosensing and immunoassay, Trends Anal. Chem. 105(2018) 218-224. [85] L. Huang, Q. Zhu, J. Zhu, L. Luo, S. Pu, W. Zhang, W. Zhu, J. Sun, J. Wang, Portable colorimetric detection of mercury (II) based on a non-noble metal nanozyme with tunable activity, Inorg. Chem. 58(2019) 1638-1646. [86] Z.M. Li, X.L. Zhong, S.H. Wen, L. Zhang, R.P. Liang, J.D. Qiu, Colorimetric detection of methyltransferase activity based on the enhancement of CoOOH nanozyme activity by ssDNA, Sensors Actuators B Chem. 281(2019) 1073-1079. [87] M.N. Karim, S.R. Anderson, S. Singh, R. Ramanathan, V. Bansal, Nanostructured silver fabric as a free-standing nanozyme for colorimetric detection of glucose in urine, Biosens. Bioelectron. 110(2018) 8-15. [88] P. Weerathunge, R. Ramanathan, V.A. Torok, K. Hodgson, Y. Xu, R. Goodacre, B. Kumar Behera, V. Bansal, Ultrasensitive colorimetric detection of murine norovirus using nanozyme aptasensor, Anal. Chem. 91(2019) 3270-3276. [89] L. Huang, D.W. Sun, H. Pu, Q. Wei, L. Luo, J. Wang, A colorimetricpaper sensor based on the domino reaction of acetylcholinesterase and degradable γ-MnOOH nanozyme for sensitive detection of organophosphorus pesticides, Sensors Actuators B Chem. 290(2019) 573-580. [90] S.H. Wen, X.L. Zhong, Y.D. Wu, R.P. Liang, L. Zhang, J.D. Qiu, Colorimetric assay conversion to highly sensitive electrochemical assay for bimodal detection of arsenate based on cobalt oxyhydroxide nanozyme via arsenate absorption, Anal. Chem. 91(2019) 6487-6497. [91] H. Sun, Y. Zhou, J. Ren, X. Qu, Carbon nanozymes:enzymatic properties, catalytic mechanism, and applications, Angew. Chem. Int. Ed. 5(2018) 9224-9237. [92] R. Das, A. Dhiman, A. Kapil, V. Bansal, T. Kumar Sharma, Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold nanozyme, Anal. Bioanal. Chem. 411(2019) 1229-1238. [93] P.C. Lee, N.S. Li, Y.P. Hsu, C. Peng, H.W. Yang, Direct glucose detection in whole blood by colorimetric assay based on glucose oxidase-conjugated graphene oxide/MnO2 nanozymes, Analyst 144(2019) 3038-3044. [94] S. Li, X. Liu, H. Chai, Y. Huang, Recent advances in the construction and analytical applications of metal-organicframeworks-based nanozymes, Trends Anal. Chem. 105(2018) 391-403. [95] D. Wu, N. Hu, J. Liu, G. Fan, X. Li, Juan, C. Dai, Y. Suo, G. Li, Y. Wu, Ultrasensitive colorimetric sensing strategy based on ascorbic acid triggered remarkable photoactive-nanoperoxidase for signal amplification and its application to α-glucosidase activity detection, Talanta 190(2018) 103-109. [96] P.C. Kuo, C.W. Lien, J.Y. Mao, B. Unnikrishnan, H.T. Chang, H.J. Lin, C.C. Huang, Detection of urinary spermine by using silver-gold/silver chloride nanozymes, Anal. Chim. Acta 1009(2018) 89-97. [97] M.X. Guo, Y.F. Li, Cu (II)-based metal-organic xerogels as a novel nanozyme for colorimetric detection of dopamine, Spectrochim. Acta A Mol. Biomol. Spectrosc. 207(2019) 236-241. [98] J. Xian, Y. Weng, H. Guo, Y. Li, B. Yao, W. Weng, One-pot fabrication of Fe-doped carbon nitride nanoparticles as peroxidase mimetics for H2O2 and glucose detection, Spectrochim. Acta A Mol. Biomol. Spectrosc. 215(2019) 218-224. [99] M. Rahimi-Nasrabadi, M. Hosseini, A.H. Keihan, M.R. Ganjali, A colorimetric sensor for dopamine detection based on peroxidase-like activity of Ce2(MoO4)3 nanoplates, Curr. Pharm. Anal. 15(2019) 224-230. [100] J. Guo, Y. Wang, M. Zhao, A self-activated nanobiocatalytic cascade system based on an enzyme-inorganic hybrid nanoflower for colorimetric and visual detection of glucose in human serum, Sensors Actuators B Chem. 284(2019) 45-54. [101] C.R. Li, J. Hai, L. Fan, S. Li, B. Wang, Z. Yang, Amplified colorimetric detection of Ag+ based on Ag+-triggered peroxidase-like catalytic activity of ZIF-8/GO nanosheets, Sensors and Actuators B:Chemical 284(2019) 213-219. [102] T. Liu, J. Tian, L. Cui, Q. Liu, L. Wu, X. Zhang, Facile strategy to prepare a metalloporphyrin-based hydrophilic porous organic polymer with enhanced peroxidase-like activity and high stability for colorimetric detection of H2O2 and glucose, Colloids Surf. B:Biointerfaces 178(2019) 137-145. [103] Z. Li, X. Liu, X.H. Liang, J. Zhong, L. Guo, F. Fu, Colorimetric determination of xanthine in urine based on peroxidase-like activity of WO3 nanosheets, Talanta 204(2019) 278-284. [104] M. Akhond, S.R. Hormozi Jangi, S. Barzegar, G. Absalan, Introducing a nanozymebased sensor for selective and sensitive detection of mercury(II) using its inhibiting effect on production of an indamine polymer through a stable n-electron irreversible system, Chem. Pap. 74(2020) 1321-1330. [105] M. Hou, H. Zhao, Y. Feng, J. Ge, Synthesis of patterned enzyme-metal-organic framework composites by ink-jet printing, Bioresources and Bioprocessing 4(2017) 40. [106] C. Zhang, X. Wang, M. Hou, X. Li, X. Wu, J. Ge, Immobilization on metal-organic framework engenders high sensitivity for enzymatic electrochemical detection, ACS Appl. Mater. Interfaces 9(2017) 13831-13836. [107] F. Lyu, Y. Zhang, R.N. Zare, J. Ge, Z. Liu, One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities, Nano Lett. 14(2014) 5761-5765. [108] X. Wu, H. Yue, Y. Zhang, X. Gao, X. Li, L. Wang, Y. Cao, M. Hou, H. An, L. Zhang, S. Li, J. Ma, H. Lin, Y. Fu, H. Gu, We. Lou, W. Wei, R.N. Zare, J. Ge, Packaging and delivering enzymes by amorphous metal-organic frameworks, Nat Commun 10(2019) 5165. [109] J. Ge, J. Lei, R.N. Zare, Protein-inorganic hybrid nanoflowers, Nat. Nanotechnol. 7(2012) 428-432. [110] J. Wu, X. Wang, Q. Wang, Z. Lou, S. Li, Y. Zhu, L. Qin, H. Wei, Nanomaterials with enzyme-like characteristics (nanozymes):Next-generation artificial enzymes (II), Chem. Soc. Rev. 48(2019) 1004-1076. [111] H.Y. Shin, T.J. Park, M.I. Kim, Recent research trends and future prospects in nanozymes, J. Nanomater. 2015(2015) 7. [112] D. Jiang, D. Ni, Z.T. Rosenkrans, P. Huang, X. Yan, W. Cai, Nanozyme:New horizons for responsive biomedical applications, Chem. Soc. Rev. 48(2019) 3677-3998. |