[1] C.A. Floudas, G.E. Paules, A mixed-integer nonlinear programming formulation for the synthesis of heat-integrated distillation sequences, Comput. Chem. Eng. 12(6) (1988) 531-546. [2] J.A. Caballero, I.E. Grossmann, Structural considerations and modeling in the synthesis of heat-integrated thermally coupled distillation sequences, Ind. Eng. Chem. Res. 45(25) (2006) 8454-8474. [3] R. Tumbalam Gooty, R. Agrawal, M. Tawarmalani, An MINLP formulation for the optimization of multicomponent distillation configurations, Comput. Chem. Eng. 125(2019) 13-30. [4] X.H. Wang, Y.G. Li, Y.D. Hu, Y.L. Wang, Synthesis of heat-integrated complex distillation systems via genetic programming, Comput. Chem. Eng. 32(8) (2008) 1908-1917. [5] S. Zhang, Y.Q. Luo, Y.J. Ma, X.G. Yuan, Simultaneous optimization of nonsharp distillation sequences and heat integration networks by simulated annealing algorithm, Energy. 162(2018) 1139-1157. [6] S. Zhang, Y.Q. Luo, X.G. Yuan, Synthesis of simultaneously heat integrated and thermally coupled nonsharp distillation sequences based on stochastic optimization, Comput. Chem. Eng. 127(2019) 158-174. [7] U. Nallasivam, V.H. Shah, A.A. Shenvi, J. Huff, M. Tawarmalani, R. Agrawal, Global optimization of multicomponent distillation configurations:2. enumeration based global minimization algorithm, AIChE J 62(6) (2016) 2071-2086. [8] Z. Jiang, T.J. Mathew, H. Zhang, J. Huff, U. Nallasivam, M. Tawarmalani, R. Agrawal, Global optimization of multicomponent distillation configurations:global minimization of total cost for multicomponent mixture separations, Comput. Chem. Eng. 126(2019) 249-262. [9] V.H. Shah, R. Agrawal, A matrix method for multicomponent distillation sequences, AIChE J. 56(7) (2010) 1759-1775. [10] M.R. Fenske, Fractionation of straight-run Pennsylvania gasoline, Ind. Eng. Chem. 24(5) (1932) 482-485. [11] A.J.V. Underwood, Fractional distillation of multicomponent mixtures, Chem. Eng. Prog. 44(12) (1949) 2844-2847. [12] E.R. Gilliland, Multicomponent rectification estimation of the number of theoretical plates as a function of the reflux ratio, Ind. Eng. Chem. 32(9) (1940) 1220-1223. [13] A. Giridhar, R. Agrawal, Synthesis of distillation configurations:I. characteristics of a good search space, Comput. Chem. Eng. 34(1) (2010) 73-83. [14] F. Wang, Y.Q. Luo, X.G. Yuan, A formulation methodology for multicomponent distillation sequences based on stochastic optimization, Chin. J. Chem. Eng. 24(9) (2016) 1229-1235. [15] G. Madenoor Ramapriya, A.A. Shenvi, M. Tawarmalani, R. Agrawal, A new framework for combining a condenser and reboiler in a configuration to consolidate distillation columns, Ind. Eng. Chem. Res. 54(42) (2015) 10449-10464. [16] Y.J. Ma, Y.Q. Luo, X.G. Yuan, Simultaneous optimization of complex distillation systems with a new pseudo-transient continuation model, Ind. Eng. Chem. Res. 56(21) (2017) 6266-6274. [17] Y.J. Ma, Y.Q. Luo, X. Ma, T. Yang, D.L. Chen, X.G. Yuan, Fast algorithms for equationoriented flowsheet simulation and optimization using pseudo-transient models, Ind. Eng. Chem. Res. 57(42) (2018) 14124-14142. [18] Y.J. Ma, Y.Q. Luo, S. Zhang, X.G. Yuan, Simultaneous optimization of complex distillation systems and heat integration using pseudo-transient continuation models, Comput. Chem. Eng. 108(2018) 337-348. [19] L.T. Biegler, I.E. Grossmann, A.W. Westerberg, A note on approximation techniques used for process optimization, Comput. Chem. Eng. 9(2) (1985) 201-206. [20] Y.J. Ma, Y.Q. Luo, X.G. Yuan, Equation-oriented optimization of reactive distillation systems using pseudo-transient models, Chem. Eng. Sci. 195(2019) 381-398. [21] A.W. Dowling, L.T. Biegler, Rigorous optimization-based synthesis of distillation cascades without integer variables, Comput. Aided Chem. Eng. 33(2014) 55-60. [22] A.W. Dowling, L.T. Biegler, A framework for efficient large scale equation-oriented flowsheet optimization, Comput. Chem. Eng. 72(2015) 3-20. [23] G.M. Ramapriya, A. Selvarajah, L.E. Jimenez Cucaita, J. Huff, M. Tawarmalani, R. Agrawal, Short-cut methods versus rigorous methods for performance-evaluation of distillation configurations, Ind. Eng. Chem. Res. 57(22) (2018) 7726-7731. [24] W.L. Luyben, Distillation Design and Control Using Aspen Simulation, John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2006. |