[1] M.W. Kanan, D.G. Nocera, In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+, Science 321(2008) 1072-1075. [2] C.C.L. McCrory, S.H. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction, J. Am. Chem. Soc. 135(2013) 16977-16987. [3] Z.W. Seh, J. Kibsgaard, C.F. Dickens, I.B. Chorkendorff, J.K. Norskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis:insights into materials design, Science 355(6321) (2017) eaad4998. [4] S.P. Tong, T.M. Zhang, C. Ma, Oxygen evolution behavior of PTFE-F-PbO2 electrode in H2SO4 solution, Chin. J. Chem. Eng. 16(2008) 885-889. [5] G. Li, S. Li, M. Xiao, J. Ge, C. Liu, W. Xing, Nanoporous IrO2 catalyst with enhanced activity and durability for water oxidation owing to its micro/mesoporous structure, Nanoscale 9(2017) 9291-9298. [6] T.S. Hyun, H.L. Tuller, D.Y. Youn, H.G. Kim, I.D. Kim, Facile synthesis and electrochemical properties of RuO2 nanofibers with ionically conducting hydrous layer, J. Mater. Chem. 20(2010) 435602. [7] R. Zou, S. Wen, L. Zhang, L. Liu, D. Yue, Preparation of Rh-SiO2 fiber catalyst with superior activity and reusability by electrospinning, RSC Adv. 5(2015) 99884-99891. [8] Q.Y. Deng, G.H. He, Y. Pan, X.H. Ruan, W.J. Zheng, X.M. Yan, Bis-ammonium immobilized polystyrenes with co-catalyzing functional end groups as efficient and reusable heterogeneous catalysts for synthesis of cyclic carbonate from CO2 and epoxides, RSC Adv. 6(2016) 2217-2224. [9] X. Yang, Y. Li, L. Deng, W. Li, Z. Ren, M. Yang, X. Yang, Y. Zhu, Synthesis and characterization of an IrO2-Fe2O3 electrocatalyst for the hydrogen evolution reaction in acidic water electrolysis, RSC Adv. 7(2017) 20252-20258. [10] Y.F. Zhao, X. Zhang, X.D. Jia, G.I.N. Waterhouse, R. Shi, X.R. Zhang, F. Zhan, Y. Tao, L.Z. Wu, C.H. Tung, D. O'Hare, T.R. Zhang, Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation, Adv, Energy Mater. 8(18) (2018) 1703585. [11] X.D. Jia, X. Zhang, J.Q. Zhao, Y.F. Zhao, Y.X. Zhao, G.I.N. Waterhouse, R. Shi, L.Z. Wu, C.H. Tung, T.R. Zhang, Ultrafine monolayer Co-containing layered double hydroxide nanosheets for water oxidation, J. Energy Chem. 34(2019) 57-63. [12] J.Y. Wang, T. Ouyang, N. Li, T.Y. Ma, Z.Q. Liu, S, N co-doped carbon nanotube-encapsulated core-shelled CoS2@Co nanoparticles:Efficient and stable bifunctional catalysts for overall water splitting, Sci. Bull. 63(2018) 1130-1140. [13] M.S. Ahmed, B. Choi, Y.B. Kim, Development of highly active bifunctional electrocatalyst using Co3O4 on carbon nanotubes for oxygen reduction and oxygen evolution, Sci. Rep. 8(2018) 2543. [14] A. Bergmann, E. Martinez-Moreno, D. Teschner, P. Chernev, M. Gliech, J.F. de Araujo, T. Reier, H. Dau, P. Strasser, Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution, Nat. Commun. 6(2015) 8625. [15] C.W. Tung, Y.Y. Hsu, Y.P. Shen, Y. Zheng, T.S. Chan, H.S. Sheu, Y.C. Cheng, H.M. Chen, Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution, Nat. Commun. 6(2015) 8106. [16] X. Xie, Y. Li, Z.Q. Liu, M. Haruta, W. Shen, Low-temperature oxidation of CO catalysed by Co3O4 nanorods, Nature 458(2009) 746-749. [17] N. Xu, Y. Liu, X. Zhang, X. Li, A. Li, J. Qiao, J. Zhang, Self-assembly formation of bifunctional Co3O4/MnO2-CNTs hybrid catalysts for achieving both high energy/power density and cyclic ability of rechargeable zinc-air battery, Sci. Rep. 6(2016) 33590. [18] J.G. McAlpin, Y. Surendranath, M. Dinca, T.A. Stich, S.A. Stoian, W.H. Casey, D.G. Nocera, R.D. Britt, EPR evidence for Co(IV) species produced during water oxidation at neutral pH, J. Am. Chem. Soc. 132(2010) 6882. [19] A. Gasparotto, D. Barreca, D. Bekermann, A. Devi, R.A. Fischer, P. Fornasiero, V. Gombac, O.I. Lebedev, C. Maccato, T. Montini, G. Van Tendeloo, E. Tondello, Fdoped Co3O4 photocatalysts for sustainable H2 generation from water/ethanol, J. Am. Chem. Soc. 133(2011) 19362-19365. [20] H.T. Wang, W. Wang, M. Asif, Y. Yu, Z.Y. Wang, J.L. Wang, H.F. Liu, J.W. Xiao, Cobalt ion-coordinated self-assembly synthesis of nitrogen-doped ordered mesoporous carbon nanosheets for efficiently catalyzing oxygen reduction, Nanoscale 9(2017) 15534-15541. [21] Y.J. Sa, K. Kwon, J.Y. Cheon, F. Kleitz, S.H. Joo, Ordered mesoporous Co3O4 spinels as stable, bifunctional, noble metal-free oxygen electrocatalysts, J. Mater. Chem. A 34(1) (2013) 9992-10001. [22] Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction, Nat. Mater. 10(2011) 780-786. [23] L. Shang, H.J. Yu, X. Huang, T. Bian, R. Shi, Y.F. Zhao, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T.R. Zhang, Well-dispersed ZIF-derived Co,N-Co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts, Adv. Mater. 28(2016) 1668-1674. [24] Y. Zheng, W. Wang, D. Jiang, L. Zhang, X. Li, Z. Wang, Ultrathin mesoporous Co3O4 nanosheets with excellent photo-/thermo-catalytic activity, J. Mater. Chem. A 4(2016) 105-112. [25] L. Zhang, H. Li, K. Li, L. Li, J. Wei, L. Feng, Q. Fu, Morphology-controlled fabrication of Co3O4 nanostructures and their comparative catalytic activity for oxygen evolution reaction, J. Alloys Compd. 680(2016) 146-154. [26] Y. Dong, K. He, L. Yin, A. Zhang, A facile route to controlled synthesis of Co3O4 nanoparticles and their environmental catalytic properties, Nanotechnology 18(2007) 435602. [27] Q. Qu, J.H. Zhang, J. Wang, Q.Y. Li, C.W. Xu, X. Lu, Three-dimensional ordered mesoporous Co3O4 enhanced by Pd for oxygen evolution reaction, Sci. Rep. 7(2017) 41542. [28] J. Mujtaba, H. Sun, G. Huang, K. Molhave, Y. Liu, Y. Zhao, X. Wang, S. Xu, J. Zhu, Nanoparticle decorated ultrathin porous nanosheets as hierarchical Co3O4 nanostructures for lithium ion battery anode materials, Sci. Rep. 6(2016) 20592. [29] L.L. Kong, L. Wang, D.Y. Sun, S. Meng, D.D. Xu, Z.X. He, X.Y. Dong, Y.F. Li, Y.C. Jin, Aggregation-morphology-dependent electrochemical performance of Co3O4 anode materials for lithium-ion batteries, Molecules 24(2019) 15. [30] R.Z. Ma, M. Osada, L.F. Hu, T. Sasaki, Self-assembled nanofilm of monodisperse cobalt hydroxide hexagonal platelets:Topotactic conversion into oxide and resistive switching, Chem. Mater. 22(2010) 6341-6346. [31] B.M. Abu-Zied, S.A. Soliman, S.E. Abdellah, Pure and Ni-substituted Co3O4 spinel catalysts for direct N2O decomposition, Chin. J. Catal. 35(2014) 1105-1112. [32] N. Muthuswamy, M.E.M. Buan, J.C. Walmsley, M. Ronning, Evaluation of ORR active sites in nitrogen-doped carbon nanofibers by KOH post treatment, Catal. Today 301(2018) 11-16. [33] F. Yu, H.Q. Zhou, Z. Zhu, J.Y. Sun, R. He, J.M. Bao, S. Chen, Z.F. Ren, Three-dimensional nanoporous iron nitride film as an efficient electrocatalyst for water oxidation, ACS Catal. 7(2017) 2052-2057. [34] Z.P. Yao, Y.J. Zhang, Y.Q. He, Q.X. Xia, Z.H. Jiang, Synthesis of hierarchical dendritic micro-nano structure ZnFe2O4 and photocatalytic activities for water splitting, Chin. J. Chem. Eng. 24(2016) 1112-1116. [35] S. Dou, L. Tao, J. Huo, S.Y. Wang, L.M. Dai, Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis, Energy Environ. Sci. 9(2016) 1320-1326. [36] Z.H. Xiao, Y. Wang, Y.C. Huang, Z.X. Wei, C.L. Dong, J.M. Ma, S.H. Shen, Y.F. Li, S.Y. Wang, Filling the oxygen vacancies in Co3O4 with phosphorus:an ultra-efficient electrocatalyst for overall water splitting, Energy Environ. Sci. 10(2017) 2563-2569. [37] I.S. Cho, H.S. Han, M. Logar, J. Park, X.L. Zheng, Enhancing low-bias performance of hematite photoanodes for solar water splitting by simultaneous reduction of bulk, interface, and surface recombination pathways, Adv. Energy Mater. 6(2016) 9. [38] S.C. Petitto, E.M. Marsh, G.A. Carson, M.A. Langell, Cobalt oxide surface chemistry:the interaction of CoO(100), Co3O4(110) and Co3O4(111) with oxygen and water, J. Mol. Catal. A Chem. 281(2008) 49-58. [39] C.J. Zhao, P.W. Li, D.M. Shao, R.Z. Zhang, S.Q. Wang, Z.Q. Zhu, C.H. Zhao, Phytic acidderived Co2-xNixP2O7-C/RGO and its superior OER electrocatalytic performance, Int. J. Hydrog. Energy 44(2019) 844-852. [40] R.H. Tammam, A.M. Fekry, M.M. Saleh, Enhanced oxygen evolution reaction over glassy carbon electrode modified with NiOx and Fe3O4, Korean J. Chem. Eng. 36(2019) 1932-1939. [41] Y.P. Zhu, T.Y. Ma, M. Jaroniec, S.Z. Qiao, Self-tmplating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis, Angew. Chem. Int. Edit. 56(2017) 1324-1328. [42] X.F. Cheng, W.H. Leng, D.P. Liu, Y.M. Xu, J.Q. Zhang, C.N. Cao, Electrochemical preparation and characterization of surface-fluorinated TiO2 nanoporous film and its enhanced photoelectrochemical and photocatalytic properties, J. Phys. Chem. C 112(2008) 8725-8734. [43] F.L. Lai, J.R. Feng, X.B. Ye, W. Zong, G.J. He, Y.E. Miao, X.M. Han, X.Y. Ling, I.P. Parkin, B.C. Pan, Y.F. Sun, T.X. Liu, Energy level engineering in transition-metal doped spinel-structured nanosheets for efficient overall water splitting, J. Mater. Chem. A 7(2019) 827-833. [44] Y.Q. Zhang, B. Ouyang, J. Xu, G.C. Jia, S. Chen, R.S. Rawat, H.J. Fan, Rapid synthesis of cobalt nitride nanowires:highly efficient and low-cost catalysts for oxygen evolution, Angew. Chem. Int. Edit. 55(2016) 8670-8674. [45] R. Frydendal, E.A. Paoli, B.P. Knudsen, B. Wickman, P. Malacrida, I.E.L. Stephens, I. Chorkendorff, Benchmarking the stability of oxygen evolution reaction catalysts:the importance of monitoring mass losses, ChemElectroChem 1(2014) 2075-2081. [46] X.L. Xiong, C. You, Z. Liu, A.M. Asiri, X.P. Sun, Co-doped CuO nanoarray:an efficient oxygen evolution reaction electrocatalyst with enhanced activity, ACS Sustain. Chem. Eng. 6(2018) 2883-2887. [47] C. Spori, J.T.H. Kwan, A. Bonakdarpour, D.P. Wilkinson, P. Strasser, The stability challenges of oxygen evolving catalysts:towards a common fundamental understanding and mitigation of catalyst degradation, Angew. Chem. Int. Edit. 56(2017) 5994-6021. |