[1] F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 68 (2018) 394–424. [2] E.V. Stevens, E.M. Posadas, B. Davidson, E.C. Kohn, Proteomics in cancer, Ann. Oncol. Off. J. Eur. Soc. Med. Oncol./ESMO 15 Suppl 4 (2004), iv167–171. [3] D. Rosenblum, D. Peer, Omics-based nanomedicine: the future of personalized oncology, Cancer Lett. 352 (2014) 126–136. [4] D.F. Hayes, OMICS-based personalized oncology: if it is worth doing, it is worth doing well!, BMC Med. 11 (2013) 221–224. [5] W.J. Rettig, L.J. Old, Immunogenetics of human cell surface differentiation, Annu. Rev. Immunol. 7 (1989) 481–511. [6] D.T. Loo, J.P. Mather, Antibody-based identification of cell surface antigens: targets for cancer therapy, Curr. Opin. Pharmacol. 8 (2008) 627–631. [7] R.M. Lu, Y.C. Hwang, I.J. Liu, C.C. Lee, H.Z. Tsai, H.J. Li, H.C. Wu, Development of therapeutic antibodies for the treatment of diseases, J. Biomed. Sci. 27 (2020) 1–30. [8] H. Kaplon, M. Muralidharan, Z. Schneider, J.M. Reichert, Antibodies to watch in 2020, mAbs 12 (2020) 1703531–1703554. [9] P. Hubert, S. Amigorena, Antibody-dependent cell cytotoxicity in monoclonal antibody-mediated tumor immunotherapy, Oncoimmunology 1 (2012) 103–105. [10] G. Toth, A. Szoor, L. Simon, Y. Yarden, J. Szollosi, G. Vereb, The combination of trastuzumab and pertuzumab administered at approved doses may delay development of trastuzumab resistance by additively enhancing antibodydependent cell-mediated cytotoxicity, mAbs 8 (2016) 1361–1370. [11] D. Ernst, B.A. Williams, X.H. Wang, N. Yoon, K.P. Kim, J. Chiu, Z.J. Luo, K.G. Hermans, J. Krueger, A. Keating, Humanized anti-CD123 antibody facilitates NK cell antibody-dependent cell-mediated cytotoxicity (ADCC) of Hodgkin lymphoma targets via ARF6/PLD-1, Blood Cancer J. 9 (2019) 6–16. [12] T. Nakajima, H. Okayama, M. Ashizawa, M. Noda, K. Aoto, M. Saito, T. Monma, S. Ohki, M. Shibata, S. Takenoshita, K. Kono, Augmentation of antibodydependent cellular cytotoxicity with defucosylated monoclonal antibodies in patients with GI-tract cancer, Oncol. Lett. 15 (2018) 2604–2610. [13] L.M. Rogers, S. Veeramani, G.J. Weiner, Complement in monoclonal antibody therapy of cancer, Immunol. Res. 59 (2014) 203–210. [14] M.T. Winkler, R.T. Bushey, E.B. Gottlin, M.J. Campa, E.S. Guadalupe, A.D. Volkheimer, J.B. Weinberg, E.F. Patz Jr., Enhanced CDC of B cell chronic lymphocytic leukemia cells mediated by rituximab combined with a novel anti-complement factor H antibody, PLoS ONE 12 (2017) e0179841–0179852. [15] G. Kohler, C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256 (1975) 495–497. [16] M. Tomita, K. Tsumoto, Hybridoma technologies for antibody production, Immunotherapy. 3 (2011) 371–380. [17] J.G.R. Hurrell, Monoclonal Hybridoma Antibodies: Techniques and Applications, CRC Press, 2018. [18] S. Zaroff, G. Tan, Hybridoma technology: the preferred method for monoclonal antibody generation for in vivo applications, Biotechniques 67 (2019) 90–92. [19] P. Holzlohner, K. Hanack, Generation of murine monoclonal antibodies by hybridoma technology, J. Visualized Exp. (2017) e54832–54838. [20] C. Zhang, Hybridoma technology for the generation of monoclonal antibodies, Methods Mol. Biol. 901 (2012) 117–135. [21] R.M. Hnasko, L.H. Stanker, Hybridoma technology, Methods Mol. Biol. 1318 (2015) 15–28. [22] S. Pandey, Hybridoma technology for production of monoclonal antibodies, Hybridoma 1 (2010) 88–94. [23] R.J. Ober, C.G. Radu, V. Ghetie, E.S. Ward, Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies, Int. Immunol. 13 (2001) 1551–1559. [24] M. Stern, R. Herrmann, Overview of monoclonal antibodies in cancer therapy: present and promise, Crit. Rev. Oncol. Hematol. 54 (2005) 11–29. [25] C.M. Hammers, J.R. Stanley, Antibody phage display: technique and applications, J, Invest. Dermatol. 134 (2014) 1–5. [26] M.A. Alfaleh, H.O. Alsaab, A.B. Mahmoud, A.A. Alkayyal, M.L. Jones, S.M. Mahler, A.M. Hashem, Phage display derived monoclonal antibodies: from bench to bedside, Front. Immunol. 11 (2020) 1986–2022. [27] M.L. Chiu, G.L. Gilliland, Engineering antibody therapeutics, Curr. Opin. Struct. Biol. 38 (2016) 163–173. [28] S.A. Sievers, L. Scharf, A.P. West Jr., P.J. Bjorkman, Antibody engineering for increasedpotency,breadthandhalf-life, Curr. Opin. HIV AIDS10(2015)151–159. [29] A. Thakur, M. Huang, L.G. Lum, Bispecific antibody based therapeutics: Strengths and challenges, Blood Rev. 32 (2018) 339–347. [30] U. Brinkmann, R.E. Kontermann, The making of bispecific antibodies, mAbs 9 (2017) 182–212. [31] Z. Liu, E.C. Leng, K. Gunasekaran, M. Pentony, M. Shen, M. Howard, J. Stoops, K. Manchulenko, V. Razinkov, H. Liu, W. Fanslow, Z. Hu, N. Sun, H. Hasegawa, R. Clark, I.N. Foltz, W. Yan, A novel antibody engineering strategy for making monovalent bispecific heterodimeric IgG antibodies by electrostatic steering mechanism, J. Biol. Chem. 290 (2015) 7535–7562. [32] N. Tsurushita, P.R. Hinton, S. Kumar, Design of humanized antibodies: from anti-Tac to Zenapax, Methods 36 (2005) 69–83. [33] A. Jakobovits, R.G. Amado, X. Yang, L. Roskos, G. Schwab, From XenoMouse technology to panitumumab, the first fully human antibody product from transgenic mice, Nat. Biotechnol. 25 (2007) 1134–1143. [34] A. Frenzel, T. Schirrmann, M. Hust, Phage display-derived human antibodies in clinical development and therapy, mAbs 8 (2016) 1177–1194. [35] P. Tyagi, Recent results and ongoing trials with panitumumab (ABX-EGF), a fully human anti-epidermal growth factor receptor antibody, in metastatic colorectal cancer, Clin. Colorectal.Cancer 5 (2005) 21–23. [36] H. Waldmann, Human monoclonal antibodies: the benefits of humanization, Methods Mol. Biol. 2019 (1904) 1–10. [37] L. Loo, M.K. Robinson, G.P. Adams, Antibody engineering principles and applications, Cancer J. 14 (2008) 149–153. [38] D.G. Maloney, A.J. Grillo-Lopez, C.A. White, D. Bodkin, R.J. Schilder, J.A. Neidhart, N. Janakiraman, K.A. Foon, T.M. Liles, B.K. Dallaire, K. Wey, I. Royston, T. Davis, R. Levy, IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma, Blood 90 (1997) 2188–2195. [39] D.G. Maloney, A.J. Grillo-Lopez, D.J. Bodkin, C.A. White, T.M. Liles, I. Royston, C. Varns, J. Rosenberg, R. Levy, IDEC-C2B8: results of a phase I multiple-dose trial in patients with relapsed non-Hodgkin’s lymphoma, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 15 (1997) 3266–3274. [40] D. Zahavi, L. Weiner, Monoclonal antibodies in cancer therapy, Antibodies 9 (2020) 34–53. [41] J.K.H. Liu, The history of monoclonal antibody development –Progress, remaining challenges and future innovations, Ann. Med. Surg. 3 (2014) 113–116. [42] N. Stergiou, J. Nagel, S. Pektor, A.S. Heimes, J. Jakel, W. Brenner, M. Schmidt, M. Miederer, H. Kunz, F. Roesch, E. Schmitt, Evaluation of a novel monoclonal antibody against tumor-associated MUC1 for diagnosis and prognosis of breast cancer, Int. J. Med. Sci. 16 (2019) 1188–1198. [43] X. Zhang, G. Soori, T.J. Dobleman, G.G. Xiao, The application of monoclonal antibodies in cancer diagnosis, Expert Rev. Mol. Diagn. 14 (2014) 97–106. [44] R.P. Taylor, M.A. Lindorfer, The role of complement in mAb-based therapies of cancer, Methods 65 (2014) 18–27. [45] K.J. Hamblett, P.D. Senter, D.F. Chace, M.M. Sun, J. Lenox, C.G. Cerveny, K.M. Kissler, S.X. Bernhardt, A.K. Kopcha, R.F. Zabinski, D.L. Meyer, J.A. Francisco, Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 10 (2004) 7063–7070. [46] A. Wolska-Washer, T. Robak, Safety and tolerability of antibody-drug conjugates in cancer, Drug Saf. 42 (2019) 295–314. [47] Y. Si, S. Kim, E. Zhang, Y. Tang, R. Jaskula-Sztul, J.M. Markert, H. Chen, L. Zhou, X.M. Liu, Targeted exosomes for drug delivery: biomanufacturing, surface tagging, and validation, Biotechnol. J. 15 (2020) e1900163–1900174. [48] W. Wang, S. Singh, D.L. Zeng, K. King, S. Nema, Antibody Structure, Instability, and Formulation, J. Pharm. Sci. 96 (2007) 1–26. [49] R. Jefferis, J. Lund, Interaction sites on human IgG-Fc for FccR: current models, Immunol. Lett. 82 (2002) 57–65. [50] H. Liu, K. May, Disulfide bond structures of IgG molecules, mAbs 4 (2012) 17–23. [51] G. Vidarsson, G. Dekkers, T. Rispens, IgG subclasses and allotypes: from structure to effector functions, Front. Immunol. 5 (2014) 1–17. [52] X.-R. Jiang, A. Song, S. Bergelson, T. Arroll, B. Parekh, K. May, S. Chung, R. Strouse, A. Mire-Sluis, M. Schenerman, Advances in the assessment and control of the effector functions of therapeutic antibodies, Nat. Rev. Drug Discovery 10 (2011) 101–111. [53] Z.K. Indik, J. Park, S. Hunter, A.D. Schreiber, The molecular dissection of Fcy receptor mediated phagocytosis, J. Am. Soc. Hematol. 86 (1995) 4389–4399. [54] L.M. Weiner, R. Surana, S. Wang, Monoclonal antibodies: versatile platforms for cancer immunotherapy, Nat. Rev. Immunol. 10 (2010) 317–327. [55] C. Janeway, Immunobiology: The Immune System in Health and Disease, Garland Science, Taylor & Francis Group, 1999. [56] A.F. LoBuglio, R.H. Wheeler, J. Trang, A. Haynes, K. Rogers, E.B. Harvey, L. Sun, J. Ghrayeb, M.B. Khazaeli, Mouse/human chimeric monoclonal antibody in man: Kinetics and immune response, Proc. Natl. Acad. Sci. USA 86 (1989) 4220–4224. [57] J.J. Tjandra, L. Ramadi, I.F. McKenzie, Development of human anti-murine antibody (HAMA) response in patients, Immunol. Cell Biol. 68 (1990) 367–376. [58] S.L. Morrison, M.J. Johnson, L.A. Herzenberg, V.T. Oi, Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains, Proc. Natl. Acad. Sci. USA 81 (1984) 6851–6855. [59] L.G. Presta, Engineering of therapeutic antibodies to minimize immunogenicity and optimize function, Adv. Drug Deliv. Rev. 58 (2006) 640–656. [60] P.T. Jones, P.H. Dear, J. Foote, M.S. Neuberger, G. Winter, Replacing the complementarity-determining regions in a human antibody with those from a mouse, Nature 321 (1986) 522–525. [61] J. McCafferty, A.D. Griffiths, G. Winter, D.J. Chiswell, Phage antibodies: filamentous phage displaying antibody variable domains, Nature 348 (1990) 552–554. [62] G. Winter, A.D. Griffiths, R.E. Hawkins, H.R. Hoogenboom, Making antibodies by phage display technology, Annu. Rev. Immunol. 12 (1994) 433–455. [63] H. Thie, T. Meyer, T. Schirrmann, M. Hust, S. Dubel, Phage display derived therapeutic antibodies, Curr. Pharm. Biotechnol. 9 (2008) 439–446. [64] G.L. Boulianne, N. Hozumi, M.J. Shulman, Production of functional chimaeric mouse/human antibody, Nature 312 (1984) 643–646. [65] N. Lonberg, L.D. Taylor, F.A. Harding, M. Trounstine, K.M. Higgins, S.R. Schramm, C.C. Kuo, R. Mashayekh, K. Wymore, J.G. McCabe, et al., Antigenspecific human antibodies from mice comprising four distinct genetic modifications, Nature 368 (1994) 856–859. [66] L.L. Green, M.C. Hardy, C.E. Maynard-Currie, H. Tsuda, D.M. Louie, M.J. Mendez, H. Abderrahim, M. Noguchi, D.H. Smith, Y. Zeng, N.E. David, H. Sasai, D. Garza, D.G. Brenner, J.F. Hales, R.P. McGuinness, D.J. Capon, S. Klapholz, A. Jakobovits, Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs, Nat. Genet. 7 (1994) 13–21. [67] M. Brüggemann, M.J. Osborn, B. Ma, J. Hayre, S. Avis, B. Lundstrom, R. Buelow, Human antibody production in transgenic animals, Archivum immunologiae et therapiae experimentalis 63 (2015) 101–108. [68] N. Lonberg, Fully human antibodies from transgenic mouse and phage display platforms, Curr. Opin. Immunol. 20 (2008) 450–459. [69] G. Galizia, E. Lieto, F. De Vita, M. Orditura, P. Castellano, T. Troiani, V. Imperatore, F. Ciardiello, Cetuximab, a chimeric human mouse antiepidermal growth factor receptor monoclonal antibody, in the treatment of human colorectal cancer, Oncogene 26 (2007) 3654–3660. [70] A.Y. Liu, R.R. Robinson, K.E. Hellstron, E.D. Murray, C.P. Chang, I. Hellstrom, Chimeric mouse-human IgG1 antibody that can mediate lysis of cancer cells, Proc. Natl. Acad. Sci. USA 84 (1987) 3439–3443. [71] N.I. Goldstein, M. Prewett, K. Zuklys, P. Rockwell, J. Mendelsohn, Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human Tumor Xenograft model, Clin. Cancer Res. 1 (1995) 1311–1318. [72] J. Mendelsohn, M. Prewett, P. Rockwell, N.I. Goldstein, CCR 20th anniversary commentary: a chimeric antibody, C225, inhibits EGFR activation and tumor growth, Clin. Cancer Res. 21 (2015) 227–229. [73] M. Changes, Highlights of Prescribing Information-cetuximab, Package Insert 50 (2004) 1–25. [74] S. Maximiano, P. Magalhaes, M.P. Guerreiro, M. Morgado, Trastuzumab in the treatment of breast cancer, BioDrugs 30 (2016) 75–86. [75] A. Hajjar, M.A. Ergun, O. Alagoz, M. Rampurwala, Cost-effectiveness of adjuvant paclitaxel and trastuzumab for early-stage node-negative, HER2- positive breast cancer, PLoS ONE 14 (2019) e0217778–0217791. [76] S.M. Tolaney, W.T. Barry, C.T. Dang, D.A. Yardley, B. Moy, P.K. Marcom, K.S. Albain, H.S. Rugo, M. Ellis, I. Shapira, A.C. Wolff, L.A. Carey, B.A. Overmoyer, A. H. Partridge, H. Guo, C.A. Hudis, I.E. Krop, H.J. Burstein, E.P. Winer, Adjuvant paclitaxel and trastuzumab for node-negative, HER2-positive breast cancer, New Engl. J. Med. 372 (2015) 134–141. [77] M.A. Molina, J. Codony-Servat, J. Albanell, F. Rojo, J. Arribas, J. Baselga, Trastuzumab (Herceptin), a Humanized Anti-HER2 Receptor Monoclonal Antibody, Inhibits Basal and Activated HER2 Ectodomain Cleavage in Breast Cancer Cells, Cancer Research 61 (2001) 4744–4749. [78] L. Jiang, T. Jiang, J. Luo, Y. Kang, Y. Tong, X. Song, X. Gao, W. Yao, H. Tian, Efficient acquisition of fully human antibody genes against self-proteins by sorting single B cells stimulated with vaccines based on nitrated T helper cell epitopes, J. Immunol. Res. 2019 (2019) 7914326–7914341. [79] I. Hellmann, L. Waldmeier, M.C. Bannwarth-Escher, K. Maslova, F.I. Wolter, U. Grawunder, R.R. Beerli, Novel antibody drug conjugates targeting tumorassociated receptor tyrosine kinase ROR2 by functional screening of fully human antibody libraries using transpo-mAb display on progenitor B cells, Front. Immunol. 9 (2018) 2490–2505. [80] B. Boll, H. Hansen, F. Heuck, K. Reiners, P. Borchmann, A. Rothe, A. Engert, E. Pogge von Strandmann, The fully human anti-CD30 antibody 5F11 activates NF-{kappa}B and sensitizes lymphoma cells to bortezomib-induced apoptosis, Blood 106 (2005) 1839–1842. [81] A.L. Nelson, E. Dhimolea, J.M. Reichert, Development trends for human monoclonal antibody therapeutics, Nat. Rev. Drug Discov. 9 (2010) 767–774. [82] Q. Wang, Y. Chen, J. Park, X. Liu, Y. Hu, T. Wang, K. McFarland, M.J. Betenbaugh, Design and production of bispecific antibodies, Antibodies (Basel) 8 (2019), antib8030043-8030062. [83] J. Golay, S. Choblet, J. Iwaszkiewicz, P. Cerutti, A. Ozil, S. Loisel, M. Pugniere, G. Ubiali, V. Zoete, O. Michielin, C. Berthou, J. Kadouche, J.P. Mach, M. DuonorCerutti, Design and validation of a novel generic platform for the production of tetravalent IgG1-like bispecific antibodies, J. Immunol. 196 (2016) 3199–3211. [84] F. Liu, S. Guttikonda, M.R. Suresh, Bispecific monoclonal antibodies against a viral and an enzyme: utilities in ultrasensitive virus ELISA and phage display technology, J. Immunol. Methods 274 (2003) 115–127. [85] S.E. Sedykh, V.V. Prinz, V.N. Buneva, G.A. Nevinsky, Bispecific antibodies: design, therapy, perspectives, Drug Des. Devel. Ther. 12 (2018) 195–208. [86] K.E. Tiller, P.M. Tessier, Advances in antibody design, Annu. Rev. Biomed. Eng. 17 (2015) 191–216. [87] Z. Elgundi, M. Reslan, E. Cruz, V. Sifniotis, V. Kayser, The state-of-play and future of antibody therapeutics, Adv. Drug Deliv. Rev. 122 (2017) 2–19. [88] M. Godar, H. de Haard, C. Blanchetot, J. Rasser, Therapeutic bispecific antibody formats: a patent applications review (1994–2017), Expert Opin. Ther. Pat. 28 (2018) 251–276. [89] L.L. Sun, D. Ellerman, M. Mathieu, M. Hristopoulos, X. Chen, Y. Li, X. Yan, R. Clark, A. Reyes, E. Stefanich, E. Mai, J. Young, C. Johnson, M. Huseni, X. Wang, et al., Anti-CD20/CD3 T cell-dependent bispecific antibody for the treatment of B cell malignancies, Sci. Transl. Med. 7 (2015), 287ra270-279. [90] H. Yao, F. Jiang, A. Lu, G. Zhang, Methods to design and synthesize antibodydrug conjugates (ADCs), Int. J. Mol. Sci. 17 (2016) 194–205. [91] J.R. McCombs, S.C. Owen, Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry, AAPS J. 17 (2015) 339–351. [92] L.R. Saunders, A.J. Bankovich, W.C. Anderson, M.A. Aujay, S. Bheddah, K. Black, R. Desai, P.A. Escarpe, J. Hampl, A. Laysang, D. Liu, J. Lopez-Molina, M. Milton, A. Park, M.A. Pysz, et al., A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo, Sci. Transl. Med. 7 (2015), 302ra136-163. [93] L. Zhou, N. Xu, Y. Sun, X.M. Liu, Targeted biopharmaceuticals for cancer treatment, Cancer Lett. 352 (2014) 145–151. [94] H. Almasbak, T. Aarvak, M.C. Vemuri, CAR T cell therapy: a game changer in cancer treatment, J. Immunol. Res. 2016 (2016) 5474602–5474611. [95] H. Dai, Y. Wang, X. Lu, W. Han, Chimeric antigen receptors modified T-cells for cancer therapy, J. Natl Cancer Inst. 108 (2016), djv439-552. [96] M.S. Magee, A.E. Snook, Challenges to chimeric antigen receptor (CAR)-T cell therapy for cancer, Discov. Med. 18 (2014) 265–271. [97] B.L. Zhang, D.Y. Qin, Z.M. Mo, Y. Li, W. Wei, Y.S. Wang, W. Wang, Y.Q. Wei, Hurdles of CAR-T cell-based cancer immunotherapy directed against solid tumors, Sci. China Life Sci. 59 (2016) 340–348. [98] R. Kunert, D. Reinhart, Advances in recombinant antibody manufacturing, Appl. Microbiol. Biotechnol. 100 (2016) 3451–3461. [99] P. Polakis, Antibody drug conjugates for cancer therapy, Pharmacol. Rev. 68 (2016) 3–19. [100] C.C. Zhang, Z. Yan, B. Pascual, A. Jackson-Fisher, D.S. Huang, Q. Zong, M. Elliott, C. Fan, N. Huser, J. Lee, M. Sung, P. Sapra, Gemtuzumab Ozogamicin (GO) inclusion to induction chemotherapy eliminates leukemic initiating cells and significantly improves survival in mouse models of acute myeloid Leukemia, Neoplasia 20 (2018) 1–11. [101] M. Gottardi, F. Mosna, S. de Angeli, C. Papayannidis, A. Candoni, M. Clavio, C. Tecchio, A. Piccin, M.C. dell’Orto, F. Benedetti, G. Martinelli, F. Gherlinzoni, Clinical and experimental efficacy of gemtuzumab ozogamicin in core binding factor acute myeloid leukemia, Hematol Rep. 9 (2017) 87–90. [102] F.R. Appelbaum, I.D. Bernstein, Gemtuzumab ozogamicin for acute myeloid leukemia, Blood 130 (2017) 2373–2376. [103] J.K. Lamba, L. Chauhan, M. Shin, M.R. Loken, J.A. Pollard, Y.C. Wang, R.E. Ries, R. Aplenc, B.A. Hirsch, S.C. Raimondi, R.B. Walter, I.D. Bernstein, A.S. Gamis, T. A. Alonzo, S. Meshinchi, CD33 Splicing polymorphism determines gemtuzumab ozogamicin response in De Novo Acute Myeloid Leukemia: report from randomized phase III children’s oncology group trial AAML0531, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 35 (2017) 2674–2682. [104] C.D. Godwin, R.P. Gale, R.B. Walter, Gemtuzumab ozogamicin in acute myeloid leukemia, Leukemia 31 (2017) 1855–1868. [105] C. Selby, L.R. Yacko, A.E. Glode, Gemtuzumab ozogamicin: back again, J. Adv. Pract. Oncol. 10 (2019) 68–82. [106] J. Baron, E.S. Wang, Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia, Expert Rev. Clin. Pharmacol. 11 (2018) 549–559. [107] S. Castaigne, C. Pautas, C. Terré, E. Raffoux, D. Bordessoule, J.-N. Bastie, O. Legrand, X. Thomas, P. Turlure, O. Reman, T. de Revel, L. Gastaud, N. de Gunzburg, N. Contentin, E. Henry, et al., Effect of gemtuzumab ozogamicin on survivalofadultpatients withde-novoacute myeloidleukaemia (ALFA-0701): a randomised, open-label, phase 3 study, Lancet 379 (2012) 1508–1516. [108] D.S. Pereira, C.I. Guevara, L. Jin, N. Mbong, A. Verlinsky, S.J. Hsu, H. Avina, S. Karki, J.D. Abad, P. Yang, S.J. Moon, F. Malik, M.Y. Choi, Z. An, K. Morrison, et al., AGS67E, an anti-CD37 monomethyl auristatin E antibody-drug conjugate as a potential therapeutic for B/T-cell malignancies and AML: a new role for CD37 in AML, Mol. Cancer Ther. 14 (2015) 1650–1660. [109] N.C. Richardson, Y.L. Kasamon, H. Chen, R.A. de Claro, J. Ye, G.M. Blumenthal, A.T. Farrell, R. Pazdur, FDA approval summary: brentuximab vedotin in firstline treatment of peripheral T-cell lymphoma, Oncologist 24 (2019) e180–e187. [110] S. Horwitz, O.A. O’Connor, B. Pro, T. Illidge, M. Fanale, R. Advani, N.L. Bartlett, J.H. Christensen, F. Morschhauser, E. Domingo-Domenech, G. Rossi, W.S. Kim, T. Feldman, A. Lennard, D. Belada, et al., Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial, Lancet 393 (2019) 229–240. [111] C. van der Weyden, M. Dickinson, J. Whisstock, H.M. Prince, Brentuximab vedotin in T-cell lymphoma, Expert Rev. Hematol. 12 (2019) 5–19. [112] H.M. Prince, Y.H. Kim, S.M. Horwitz, R. Dummer, J. Scarisbrick, P. Quaglino, P. L. Zinzani, P. Wolter, J.A. Sanches, P.L. Ortiz-Romero, O.E. Akilov, L. Geskin, J. Trotman, K. Taylor, S. Dalle, et al., Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial, Lancet 390 (2017) 555–566. [113] Z. Zolcsak, D. Loirat, A. Fourquet, Y.M. Kirova, Adjuvant Trastuzumab Emtansine (T-DM1) and concurrent radiotherapy for residual invasive HER2-positive breast cancer: single-center preliminary results, Am. J. Clin. Oncol. 43 (12) (2020) 895–901. [114] K.A. Lyseng-Williamson, Trastuzumab emtansine: a review of its adjuvant use in residual invasive HER2-positive early breast cancer, Drugs 80 (2020) 1723–1730. [115] G. von Minckwitz, C.S. Huang, M.S. Mano, S. Loibl, E.P. Mamounas, M. Untch, N. Wolmark, P. Rastogi, A. Schneeweiss, A. Redondo, H.H. Fischer, W. Jacot, A. K. Conlin, C. Arce-Salinas, I.L. Wapnir, et al., Trastuzumab emtansine for residual invasive HER2-positive breast cancer, New Engl. J. Med. 380 (2019) 617–628. [116] M. Barok, H. Joensuu, J. Isola, Trastuzumab emtansine: mechanisms of action and drug resistance, Breast Cancer Res. 16 (2014) 209–221. [117] I.E. Krop, S.-B. Kim, A. González-Martín, P.M. LoRusso, J.-M. Ferrero, M. Smitt, R. Yu, A.C.F. Leung, H. Wildiers, Trastuzumab emtansine versus treatment of physician’s choice for pretreated HER2-positive advanced breast cancer (TH3RESA): a randomised, open-label, phase 3 trial, Lancet Oncol. 15 (2014) 689–699. |