中国化学工程学报 ›› 2021, Vol. 29 ›› Issue (3): 206-226.DOI: 10.1016/j.cjche.2020.11.036
• Special Issue on Frontiers of Chemical Engineering Thermodynamics • 上一篇 下一篇
Zhiyong Xu1, Zhongjin He2, Xuebo Quan1, Delin Sun3, Zhaohong Miao1, Hai Yu1, Shengjiang Yang1, Zheng Chen1, Jinxiang Zeng1, Jian Zhou1
收稿日期:
2020-09-13
修回日期:
2020-11-17
出版日期:
2021-03-28
发布日期:
2021-05-13
通讯作者:
Jian Zhou
基金资助:
Zhiyong Xu1, Zhongjin He2, Xuebo Quan1, Delin Sun3, Zhaohong Miao1, Hai Yu1, Shengjiang Yang1, Zheng Chen1, Jinxiang Zeng1, Jian Zhou1
Received:
2020-09-13
Revised:
2020-11-17
Online:
2021-03-28
Published:
2021-05-13
Contact:
Jian Zhou
Supported by:
摘要: Molecular simulation plays an increasingly important role in studying the properties of complex fluid systems containing charges, such as ions, piezoelectric materials, ionic liquids, ionic surfactants, polyelectrolytes, zwitterionic materials, nucleic acids, proteins, biomembranes and etc., where the electrostatic interactions are of special significance. Several methods have been available for treating the electrostatic interactions in explicit and implicit solvent models. Accurate and efficient treatment of such interactions has therefore always been one of the most challenging issues in classical molecular dynamics simulations due to their inhomogeneity and long-range characteristics. Currently, two major challenges remain in the application field of electrostatic interactions in molecular simulations; (i) improving the representation of electrostatic interactions while reducing the computational costs in molecular simulations; (ii) revealing the role of electrostatic interactions in regulating the specific properties of complex fluids. In this review, the calculation methods of electrostatic interactions, including basic principles, applicable conditions, advantages and disadvantages are summarized and compared. Subsequently, the specific role of electrostatic interactions in governing the properties and behaviors of different complex fluids is emphasized and explained. Finally, challenges and perspective on the computational study of charged systems are given.
Zhiyong Xu, Zhongjin He, Xuebo Quan, Delin Sun, Zhaohong Miao, Hai Yu, Shengjiang Yang, Zheng Chen, Jinxiang Zeng, Jian Zhou. Molecular simulations of charged complex fluids: A review[J]. 中国化学工程学报, 2021, 29(3): 206-226.
Zhiyong Xu, Zhongjin He, Xuebo Quan, Delin Sun, Zhaohong Miao, Hai Yu, Shengjiang Yang, Zheng Chen, Jinxiang Zeng, Jian Zhou. Molecular simulations of charged complex fluids: A review[J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 206-226.
[1] Z.J. He, J. Zhou, X.H. Lu, B. Corry, Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+ and K+, ACS Nano 7(11) (2013) 10148-10157. [2] R. Hinchet, U. Khan, C. Falconi, S.-W. Kim, Piezoelectric properties in twodimensional materials: Simulations and experiments, Mater. Today 21(6) (2018) 611-630. [3] J. Zhang, S.A. Meguid, Piezoelectricity of 2d nanomaterials: Characterization, properties, and applications, Semicond. Sci. Technol. 32(4) (2017) 043006. [4] C. Maton, N. De Vos, C.V. Stevens, Ionic liquid thermal stabilities: Decomposition mechanisms and analysis tools, Chem. Soc. Rev. 42(13) (2013) 5963-5977. [5] A.M. Tikhonov, H. Patel, S. Garde, M.L. Schlossman, Tail ordering due to headgroup hydrogen bonding interactions in surfactant monolayers at the water-oil interface, J. Phys. Chem. B 110(39) (2006) 19093-19096. [6] S.S. Jang, S.-T. Lin, P.K. Maiti, M. Blanco, W.A. Goddard, P. Shuler, Y. Tang, Molecular dynamics study of a surfactant-mediated decane-water interface: Effect of molecular architecture of alkyl benzene sulfonate, J. Phys. Chem. B 108(32) (2004) 12130-12140. [7] J. Xu, Y. Zhang, H. Chen, P. Wang, Z. Xie, Y. Yao, Y. Yan, J. Zhang, Effect of surfactant headgroups on the oil/water interface: An interfacial tension measurement and simulation study, J. Mol. Struct. 1052(2013) 50-56. [8] H. Zhao, Y. Bai, H. Sun, Y. Li, Study of the molecular array behaviours and interfacial activities of green surfactant alkyl polyglycoside and the mixed systems with other surfactants on oil-water interface, Mol. Simulat. 43(13-17) (2017) 1107-1115. [9] F. Jiménez-Ángeles, A. Khoshnood, A. Firoozabadi, Molecular dynamics simulation of the adsorption and aggregation of ionic surfactants at liquid-solid interfaces, J. Phys. Chem. C 121(46) (2017) 25908-25920. [10] Q. Shao, S.Y. Jiang, Molecular understanding and design of zwitterionic materials, Adv. Mater. 27(1) (2015) 15-26. [11] S. Bai, X.H. Li, R.C. Zhang, C. Li, K.Y. Zhu, P.C. Sun, Y.H. Zhao, L.X. Ren, X.Y. Yuan, Enhancing antifogging/frost-resisting performances of amphiphilic coatings via cationic, zwitterionic or anionic polyelectrolytes, Chem. Eng. J. 357(2019) 667-677. [12] S.F. Chen, J. Zheng, L.Y. Li, S.Y. Jiang, Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials, J. Am. Chem. Soc. 127(41) (2005) 14473-14478. [13] G.A. Cisneros, M. Karttunen, P. Ren, C. Sagui, Classical electrostatics for biomolecular simulations, Chem. Rev. 114(1) (2014) 779-814. [14] J. Lipfert, S. Doniach, R. Das, D. Herschlag, Understanding nucleic acid-ion interactions, Annu. Rev. Biochem 83(1) (2014) 813-841. [15] D.E. Draper, D. Grilley, A.M. Soto, Ions and RNA folding, Annu. Rev. Biophys. Biomol. Struct. 34(1) (2005) 221-243. [16] C. Sagui, T. Darden, Molecular dynamics simulations of biomolecules: Longrange electrostatic effects, Annu. Rev. Biophys. Biomol. Struct. 1(28) (1999) 155-179. [17] M. Karttunen, J. Rottler, I. Vattulainen, C. Sagui, Chapter 2 electrostatics in biomolecular simulations: Where are we now and where are we heading?, Curr. Top. Membr. 60(2008) 49-89. [18] C.M. Davis, R.B. Dyer, The role of electrostatic interactions in folding of bproteins, J. Am. Chem. Soc. 138(4) (2016) 1456-1464. [19] R.S. Negin, J.D. Carbeck, Measurement of electrostatic interactions in protein folding with the use of protein charge ladders, J. Am. Chem. Soc. 124(12) (2002) 2911-2916. [20] M. Karplus, J.A. McCammon, Molecular dynamics simulations of biomolecules, Nature Struct. Biol. 9(9) (2002) 646-652. [21] C.L. Brooks III, B.M. Pettitt, M. Karplus, Structural and energetic effects of truncating long ranged interactions in ionic and polar fluids, J. Chem. Phys. 83(11) (1985) 5897-5908. [22] I.G. Tironi, R. Sperb, P.E. Smith, W.F. van Gunsteren, A generalized reaction field method for molecular dynamics simulations, J. Chem. Phys. 102(13) (1995) 5451-5459. [23] P.P. Ewald, Die berechnung optischer und elektrostatischer gitterpotentiale, Annalen der Physik 369(3) (1921) 253-287. [24] R. Hockney, J. Eastwood, Computer Simulation using Particles, Boca Raton, FL, USA: CRC Press, 1988. [25] T. Darden, D. York, L. Pedersen, Particle mesh ewald: An n·log(n) method for ewald sums in large systems, J. Chem. Phys. 98(12) (1993) 10089-10092. [26] U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, A smooth particle mesh ewald method, J. Chem. Phys. 103(19) (1995) 8577-8593. [27] D. York, W. Yang, The fast Fourier poisson method for calculating ewald sums, J. Chem. Phys. 101(4) (1994) 3298-3300. [28] Y.-L. Wang, Z.-Y. Lu, A. Laaksonen, Specific binding structures of dendrimers on lipid bilayer membranes, Phys. Chem. Chem. Phys. 14(23) (2012) 8348-8359. [29] W. McDoniel, M. Höhnerbach, R. Canales, A.E. Ismail, P. Bientinesi, Lammps’ pppm long-range solver for the second generation xeon phi, High Performance Computing, Springer, Cham. 10266(2017) 61-78. [30] D.E. Shaw, J.P. Grossman, J.A. Bank, B. Batson, J.A. Butts, J.C. Chao, M.M. Deneroff, R.O. Dror, A. Even, C.H. Fenton, A. Forte, J. Gagliardo, G. Gill, B. Greskamp, C.R. Ho, D.J. Ierardi, L. Iserovich, J.S. Kuskin, R.H. Larson, T. Layman, L. Lee, A.K. Lerer, C. Li, D. Killebrew, K.M. Mackenzie, S.Y. Mok, M.A. Moraes, R. Mueller, L.J. Nociolo, J.L. Peticolas, T. Quan, D. Ramot, J.K. Salmon, D.P. Scarpazza, U.B. Schafer, N. Siddique, C.W. Snyder, J. Spengler, P.T.P. Tang, M. Theobald, H. Toma, B. Towles, B. Vitale, S.C. Wang, C. Young, Anton 2: Raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer, in: SC ’14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, LA, 41-53(2014). [31] P. Koehl, Electrostatics calculations: Latest methodological advances, Curr. Opin. Struct. Biol. 16(2) (2006) 142-151. [32] M.T. Neves-Petersen, S.B. Petersen, Protein electrostatics: A review of the equations and methods used to model electrostatic equations in biomolecules-applications in biotechnology, Biotechnol. Annu. Rev. 315(9) (2003) 315-395. [33] N.A. Baker, D. Bashford, D.A. Case, Implicit solvent electrostatics in biomolecular simulation, New algorithms for macromolecular simulation, Springer, Berlin, Heidelberg, 263-295(2006). [34] T.E. Cheatham, P.A. Kollman, Molecular dynamics simulations highlight the structural differences among DNA:DNA, RNA:RNA, and DNA:RNA hybrid duplexes, J. Am. Chem. Soc. 119(21) (1997) 4805-4825. [35] M. Patra, M. Karttunen, M.T. Hyvönen, E. Falck, I. Vattulainen, Lipid bilayers driven to a wrong lane in molecular dynamics simulations by subtle changes in long-range electrostatic interactions, J. Phys. Chem. B 108(14) (2004) 4485-4494. [36] G.A. Khelashvili, H.L. Scott, Combined monte carlo and molecular dynamics simulation of hydrated 18:0 sphingomyelin-cholesterol lipid bilayers, J. Chem. Phys. 120(20) (2004) 9841-9847. [37] H. Schreiber, O. Steinhauser, Cutoff size does strongly influence molecular dynamics results on solvated polypeptides, Biochemistry 31(25) (1992) 5856-5860. [38] D. van der Spoel, P.J. van Maaren, The origin of layer structure artifacts in simulations of liquid water, J. Chem. Theory Comput. 2(1) (2006) 1-11. [39] A.R. Leach, Molecular modeling: Principles and applications, 5, Prentice Hall, Essex, 2001. [40] B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory Comput. 4(3) (2008) 435-447. [41] B.R. Brooks, C.L. Brooks Iii, A.D. Mackerell Jr, L. Nilsson, R.J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A.R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C.B. Post, J.Z. Pu, M. Schaefer, B. Tidor, R.M. Venable, H.L. Woodcock, X. Wu, W. Yang, D.M. York, M. Karplus, Charmm: The biomolecular simulation program, J. Comput. Chem. 30(10) (2009) 1545-1614. [42] D.A. Case, T.E. Cheatham Iii, T. Darden, H. Gohlke, R. Luo, K.M. Merz Jr, A. Onufriev, C. Simmerling, B. Wang, R.J. Woods, The amber biomolecular simulation programs, J. Comput. Chem. 26(16) (2005) 1668-1688. [43] R. Gargallo, P.H. Hünenberger, F.X. Avilés, B. Oliva, Molecular dynamics simulation of highly charged proteins: Comparison of the particle-particle particle-mesh and reaction field methods for the calculation of electrostatic interactions, Protein Sci. 12(10) (2003) 2161-2172. [44] T.M. Nymand, P. Linse, Ewald summation and reaction field methods for potentials with atomic charges, dipoles, and polarizabilities, J. Chem. Phys. 112(14) (2000) 6152-6160. [45] M.P. Allen, M.R. Wilson, Computer simulation of liquid crystals, J. Comput. Aided Mol. Des. 3(4) (1989) 335-353. [46] E.L. Pollock, J. Glosli, Comments on P3M, FMM, and the ewald method for large periodic coulombic systems, Comput. Phys. Commun. 95(2) (1996) 93-110. [47] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids Oxford, Oxford University Press, (1989). [48] J.A. Barker, Reaction field, screening, and long-range interactions in simulations of ionic and dipolar systems, Mol. Phys. 83(6) (1994) 1057-1064. [49] A.P. dos Santos, M. Girotto, Y. Levin, Simulations of coulomb systems with slab geometry using an efficient 3D ewald summation method, J. Chem. Phys. 144(14) (2016) 144103. [50] G. Aloisi, M.L. Foresti, R. Guidelli, P. Barnes, A monte carlo simulation of water molecules near a charged wall, J. Chem. Phys. 91(9) (1989) 5592-5596. [51] A.H. Widmann, D.B. Adolf, A comparison of ewald summation techniques for planar surfaces, Comput. Phys. Commun. 107(1) (1997) 167-186. [52] E. Spohr, Effect of electrostatic boundary conditions and system size on the interfacial properties of water and aqueous solutions, J. Chem. Phys. 107(16) (1997) 6342-6348. [53] J.C. Shelley, Boundary condition effects in simulations of water confined between planar walls, Mol. Phys. 88(2) (1996) 385-398. [54] I.-C. Yeh, M.L. Berkowitz, Ewald summation for systems with slab geometry, J. Chem. Phys. 111(7) (1999) 3155-3162. [55] S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. de Vries, The martini force field: Coarse grained model for biomolecular simulations, J. Phys. Chem. B 111(27) (2007) 7812-7824. [56] Y.L. Wang, A. Laaksonen, Z.Y. Lu, Implementation of non-uniform fft based ewald summation in dissipative particle dynamics method, J. Comput. Phys. 235(2013) 666-682. [57] R. Vaiwala, S. Jadhav, R. Thaokar, Electrostatic interactions in dissipative particle dynamics-ewald-like formalism, error analysis, and pressure computation, J. Chem. Phys. 146(12) (2017) 124904. [58] C. Kutzner, S. Páll, M. Fechner, A. Esztermann, B.L. de Groot, H. Grubmüller, More bang for your buck: Improved use of gpu nodes for gromacs 2018, J. Comput. Chem. 40(27) (2019) 2418-2431. [59] M.J. Harvey, G. De Fabritiis, An implementation of the smooth particle mesh ewald method on gpu hardware, J. Chem. Theory Comput. 5(9) (2009) 2371-2377. [60] A.W. Götz, M.J. Williamson, D. Xu, D. Poole, S. Le Grand, R.C. Walker, Routine microsecond molecular dynamics simulations with amber on gpus. 1. Generalized born, J. Chem. Theory Comput. 8(5) (2012) 1542-1555. [61] R. Salomon-Ferrer, A.W. Götz, D. Poole, S. Le Grand, R.C. Walker, Routine microsecond molecular dynamics simulations with amber on gpus. 2. Explicit solvent particle mesh ewald, J. Chem. Theory Comput. 9(9) (2013) 3878-3888. [62] Y. Shan, J.L. Klepeis, M.P. Eastwood, R.O. Dror, D.E. Shaw, Gaussian split ewald: A fast ewald mesh method for molecular simulation, J. Chem. Phys. 122(5) (2005) 054101. [63] S. Koneshan, J.C. Rasaiah, R.M. Lynden-Bell, S.H. Lee, Solvent structure, dynamics, and ion mobility in aqueous solutions at 25 degrees c, J. Phys. Chem. B 102(21) (1998) 4193-4204. [64] K.J. Tielrooij, S.T. van der Post, J. Hunger, M. Bonn, H.J. Bakker, Anisotropic water reorientation around ions, J. Phys. Chem. B 115(43) (2011) 12638-12647. [65] J. Zhou, X.H. Lu, Y.R. Wang, J. Shi, Molecular dynamics study on ionic hydration, Fluid Phase Equilib. 194(2002) 257-270. [66] Z.J. He, H.S. Cui, S.H. Hao, L.P. Wang, J. Zhou, Electric-field effects on ionic hydration: A molecular dynamics study, J. Phys. Chem. B 122(22) (2018) 5991-5998. [67] S. Murad, The role of external electric fields in enhancing ion mobility, drift velocity, and drift-diffusion rates in aqueous electrolyte solutions, J. Chem. Phys. 134(11) (2011) 114504. [68] X.M. Wu, L.H. Lu, Y.D. Zhu, Y.Y. Zhang, W. Cao, X.H. Lu, Ionic hydration of Na+ inside carbon nanotubes, under electric fields, Fluid Phase Equilib. 353(2013) 1-6. [69] G. Ren, R. Shi, Y.T. Wang, Structural, dynamic, and transport properties of concentrated aqueous sodium chloride solutions under an external static electric field, J. Phys. Chem. B 118(16) (2014) 4404-4411. [70] P. Jungwirth, D.J. Tobias, Ions at the air/water interface, J. Phys. Chem. B 106(25) (2002) 6361-6373. [71] P. Jungwirth, D.J. Tobias, Specific ion effects at the air/water interface, Chem. Rev. 106(4) (2006) 1259-1281. [72] C. Caleman, J.S. Hub, P.J. van Maaren, D. van der Spoel, Atomistic simulation of ion solvation in water explains surface preference of halides, Proc. Natl. Acad. Sci. U. S. A. 108(17) (2011) 6838-6842. [73] H.J. Feng, J. Zhou, X.H. Lu, Molecular dynamics simulations on the interfacial structures of electrolyte solutions, Acta Chim. Sinica 67(21) (2009) 2407-2412. [74] P.A. Cazade, J. Dweik, B. Coasne, F. Henn, J. Palmeri, Molecular simulation of ion-specific effects in confined electrolyte solutions using polarizable forcefields, J. Phys. Chem. C 114(28) (2010) 12245-12257. [75] H.J. Kulik, E. Schwegler, G. Galli, Probing the structure of salt water under confinement with first-principles molecular dynamics and theoretical X-ray absorption spectroscopy, J. Phys. Chem. Lett. 3(18) (2012) 2653-2658. [76] H.J. Feng, J. Zhou, X.H. Lu, K.A. Fichthorn, Communication: Molecular dynamics simulations of the interfacial structure of alkali metal fluoride solutions, J. Chem. Phys. 133(6) (2010) 061103. [77] Y.D. Zhu, J. Zhou, X.H. Lu, X.J. Guo, L.H. Lu, Molecular simulations on nanoconfined water molecule behaviors for nanoporous material applications, Microfluid. Nanofluid. 2(15) (2013) 191-205. [78] Y.D. Zhu, Y. Ruan, Y.M. Zhang, L.H. Lu, X.H. Lu, Nanomaterial-oriented molecular simulations of ion behaviour in aqueous solution under nanoconfinement, Mol. Simulat. 42(10) (2016) 784-798. [79] Z.J. He, J. Zhou, X.H. Lu, B. Corry, Ice-like water structure in carbon nanotube (8,8) induces cationic hydration enhancement, J. Phys. Chem. C 117(21) (2013) 11412-11420. [80] I. Strauss, H. Chan, P. Kral, Ultralong polarization chains induced by ions solvated in confined water monolayers, J. Am. Chem. Soc. 136(4) (2014) 1170-1173. [81] Q. Shao, J. Zhou, L.H. Lu, X.H. Lu, Y.D. Zhu, S.Y. Jiang, Anomalous hydration shell order of Na+ and K+ inside carbon nanotubes, Nano Lett. 9(3) (2009) 989-994. [82] Q. Shao, L.L. Huang, J. Zhou, L.H. Lu, L.Z. Zhang, X.H. Lu, S.Y. Jiang, K.E. Gubbins, W.F. Shen, Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes, Phys. Chem. Chem. Phys. 10(14) (2008) 1896-1906. [83] Y.D. Zhu, X.J. Guo, Q. Shao, M.J. Wei, X.M. Wu, L.H. Lu, X.H. Lu, Molecular simulation study of the effect of inner wall modified groups on ionic hydration confined in carbon nanotube, Fluid Phase Equilib. 297(2) (2010) 215-220. [84] Z.J. He, J. Zhou, Steered molecular dynamics simulations of ions traversing through carbon nanotubes, Acta Chim. Sinica 69(24) (2011) 2901-2907. [85] M. Zwolak, J. Wilson, M. Di Ventra, Dehydration and ionic conductance quantization in nanopores, J. Phys.: Condens. Matter 22(45) (2010) 454126. [86] L.A. Richards, A.I. Schafer, B.S. Richards, B. Corry, The importance of dehydration in determining ion transport in narrow pores, Small 8(11) (2012) 1701-1709. [87] L.A. Richards, A.I. Schafer, B.S. Richards, Quantifying barriers to monovalent anion transport in narrow non-polar pores, Phys. Chem. Chem. Phys. 14(33) (2012) 11633-11638. [88] B. Corry, Designing carbon nanotube membranes for efficient water desalination, J. Phys. Chem. B 112(5) (2008) 1427-1434. [89] B. Corry, Water and ion transport through functionalised carbon nanotubes: Implications for desalination technology, Energy Environ. Sci. 4(3) (2011) 751-759. [90] Z.J. He, B. Corry, X.H. Lu, J. Zhou, A mechanical nanogate based on a carbon nanotube for reversible control of ion conduction, Nanoscale 6(7) (2014) 3686-3694. [91] C. Song, B. Corry, Intrinsic ion selectivity of narrow hydrophobic pores, J. Phys. Chem. B 113(21) (2009) 7642-7649. [92] S. Sahu, M. Di Ventra, M. Zwolak, Dehydration as a universal mechanism for ion selectivity in graphene and other atomically thin pores, Nano Lett. 17(8) (2017) 4719-4724. [93] Y. Ruan, Y.D. Zhu, Y.M. Zhang, Q.W. Gao, X.H. Lu, L.H. Lu, Molecular dynamics study of Mg2+/Li+ separation via biomimetic graphene-based nanopores: The role of dehydration in second shell, Langmuir 32(51) (2016) 13778-13786. [94] Y.D. Zhu, Y. Ruan, Y.M. Zhang, Y.J. Chen, X.H. Lu, L.H. Lu, Mg2+-channelinspired nanopores for Mg2+/Li+ separation: The effect of coordination on the ionic hydration microstructures, Langmuir 33(36) (2017) 9201-9210. [95] J.Y. Li, X.J. Gong, H.J. Lu, D. Li, H.P. Fang, R.H. Zhou, Electrostatic gating of a nanometer water channel, Proc. Natl. Acad. Sci. USA. 104(10) (2007) 3687-3692. [96] X.J. Gong, J.C. Li, C. Guo, K. Xu, H. Yang, Molecular switch for tuning ions across nanopores by an external electric field, Nanotechnology 24(2) (2013) 025502. [97] J. Wong-Ekkabut, M.S. Miettinen, C. Dias, M. Karttunen, Static charges cannot drive a continuous flow of water molecules through a carbon nanotube, Nat. Nanotechnol. 5(8) (2010) 555-557. [98] A.T. Celebi, A. Beskok, Molecular and continuum transport perspectives on electroosmotic slip flows, J. Phys. Chem. C 122(17) (2018) 9699-9709. [99] S. Jafari, R. Zakeri, M. Darbandi, Dpd simulation of non-newtonian electroosmotic fluid flow in nanochannel, Mol. Simulat. 44(17) (2018) 1444-1453. [100] F. Hofmeister, Zur lehre von der wirkung der salze, Archiv für experimentelle Pathologie und Pharmakologie 25(1) (1888) 1-30. [101] J.H. Jordan, C.L.D. Gibb, A. Wishard, T. Pham, B.C. Gibb, Ion-hydrocarbon and/ or ion-ion interactions: Direct and reverse hofmeister effects in a synthetic host, J. Am. Chem. Soc. 140(11) (2018) 4092-4099. [102] P.A. Gale, N. Busschaert, C.J.E. Haynes, L.E. Karagiannidis, I.L. Kirby, Anion receptor chemistry: Highlights from 2011 and 2012, Chem. Soc. Rev. 43(1) (2014) 205-241. [103] L. Xie, T. Wang, C. He, Z. Sun, Q. Peng, Molecular dynamics simulation on mechanical and piezoelectric properties of boron nitride honeycomb structures, Nanomaterials 9(7) (2019), 1044-1044. [104] K. Momeni, G.M. Odegard, R.S. Yassar, Finite size effect on the piezoelectric properties of zno nanobelts: A molecular dynamics approach, Acta Mater. 60(13) (2012) 5117-5124. [105] Y. Nan, D. Tan, J. Zhao, M. Willatzen, Z.L. Wang, Shape-and size dependent piezoelectric properties of monolayer hexagonal boron nitride nanosheets, Nanoscale Adv. 2(1) (2020) 470-477. [106] J. Zhang, J. Zhou, Piezoelectric effects on the resonance frequencies of boron nitride nanosheets, Nanotechnology 29(39) (2018) 395703. [107] T. Dan, M. Willatzen, Z.L. Wang, Prediction of strong piezoelectricity in 3r-mos2 multilayer structures, Nano Energy 56(2019) 512-515. [108] H. Jiang, Y. Su, J. Zhu, H. Lu, X. Meng, Piezoelectric and pyroelectric properties of intrinsic gan nanowires and nanotubes: Size and shape effects, Nano Energy 45(2018) 359-367. [109] S. Kim, C.B. Park, Bio-inspired synthesis of minerals for energy, environment, and medicinal applications, Adv. Funct. Mater. 23(1) (2013) 10-25. [110] R. Chen, D. Bresser, M. Saraf, P. Gerlach, A. Balducci, S. Kunz, D. Schröder, S. Passerini, J. Chen, A comparative review of electrolytes for organic-materialbased energy-storage devices employing solid electrodes and redox fluids, ChemSusChem 13(9) (2020) 2205-2219. [111] F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, W. Huang, Latest advances in supercapacitors: From new electrode materials to novel device designs, Chem. Soc. Rev. 46(22) (2017) 6816-6854. [112] H.D. Williams, N.L. Trevaskis, S.A. Charman, R.M. Shanker, W.N. Charman, C. W. Pouton, C.J.H. Porter, Strategies to address low drug solubility in discovery and development, Pharmacol. Rev. 65(1) (2013) 315. [113] S. Monti, G. Barcaro, L. Sementa, V. Carravetta, H. Ågren, Characterization of the adsorption dynamics of trisodium citrate on gold in water solution, RSC Adv. 7(78) (2017) 49655-49663. [114] O.A. Perfilieva, D.V. Pyshnyi, A.A. Lomzov, Molecular dynamics simulation of polarizable gold nanoparticles interacting with sodium citrate, J. Chem. Theory Comput. 15(2) (2019) 1278-1292. [115] Z. Wang, Z. Xu, W. Zhao, W. Chen, T. Miyoshi, N. Sahai, Isoexergonic conformations of surface-bound citrate regulated bioinspired apatite nanocrystal growth, ACS Appl. Mater. Interfaces 8(41) (2016) 28116-28123. [116] X. Xue, W. Wang, H. Fan, Z. Xu, I. Pedruzzi, P. Li, J. Yu, Adsorption behavior of oxalic acid at water-feldspar interface: Experiments and molecular simulation, Adsorption 25(6) (2019) 1191-1204. [117] D. Biriukov, O. Kroutil, M. Kabeláč, M.K. Ridley, M.L. Machesky, M. Předota, Oxalic acid adsorption on rutile: Molecular dynamics and ab initio calculations, Langmuir 35(24) (2019) 7617-7630. [118] K. Kolman, Z. Abbas, Molecular dynamics exploration for the adsorption of benzoic acid derivatives on charged silica surfaces, Colloids Surf. A Physicochem. Eng. Aspects 578(2019) 123635. [119] D. Toroz, R.B. Hammond, K.J. Roberts, S. Harris, T. Ridley, Molecular dynamics simulations of organic crystal dissolution: The lifetime and stability of the polymorphic forms of para-amino benzoic acid in aqueous environment, J. Cryst. Growth 401(2014) 38-43. [120] D.P. Otto, J. Combrinck, A. Otto, L.R. Tiedt, M.M. de Villiers, Dissipative particle dynamics investigation of the transport of salicylic acid through a simulated in vitro skin permeation model, Pharmaceuticals 11(4) (2018) 134. [121] W. Yang, C. Deng, P. Liu, Y. Hu, Z. Luo, K. Cai, Sustained release of aspirin and vitamin c from titanium nanotubes: An experimental and stimulation study, Mater. Sci. Eng. C 64(2016) 139-147. [122] J. Mai, D. Sun, L. Li, J. Zhou, Phase behavior of an amphiphilic block copolymer in ionic liquid: A dissipative particle dynamics study, J. Chem. Eng. Data 61(12) (2016) 3998-4005. [123] Y. Wang, G.A. Voth, Unique spatial heterogeneity in ionic liquids, J. Am. Chem. Soc. 127(35) (2005) 12192-12193. [124] H. Feng, J. Zhou, Y. Qian, Atomistic simulations of the solid-liquid transition of 1-ethyl-3-methyl imidazolium bromide ionic liquid, J. Chem. Phys. 135(14) (2011) 144501. [125] K. Dong, X. Liu, H. Dong, X. Zhang, S. Zhang, Multiscale studies on ionic liquids, Chem. Rev. 117(10) (2017) 6636-6695. [126] Y. Wang, W. Jiang, T. Yan, G.A. Voth, Understanding ionic liquids through atomistic and coarse-grained molecular dynamics simulations, Acc. Chem. Res. 40(11) (2007) 1193-1199. [127] H. Wang, G. Gurau, R.D. Rogers, Ionic liquid processing of cellulose, Chem. Soc. Rev. 41(4) (2012) 1519-1537. [128] H. Liu, K.L. Sale, B.M. Holmes, B.A. Simmons, S. Singh, Understanding the interactions of cellulose with ionic liquids: A molecular dynamics study, J. Phys. Chem. B 114(12) (2010) 4293-4301. [129] Y. Zhao, X. Liu, J. Wang, S. Zhang, Effects of cationic structure on cellulose dissolution in ionic liquids: A molecular dynamics study, ChemPhysChem 13(13) (2012) 3126-3133. [130] Y. Li, X. Liu, Y. Zhang, K. Jiang, J. Wang, S. Zhang, Why only ionic liquids with unsaturated heterocyclic cations can dissolve cellulose: A simulation study, ACS Sustain. Chem. Eng. 5(4) (2017) 3417-3428. [131] Y. Li, X. Liu, S. Zhang, Y. Yao, X. Yao, J. Xu, X. Lu, Dissolving process of a cellulose bunch in ionic liquids: A molecular dynamics study, Phys. Chem. Chem. Phys. 17(27) (2015) 17894-17905. [132] C. Cadena, J.L. Anthony, J.K. Shah, T.I. Morrow, J.F. Brennecke, E.J. Maginn, Why is co2 so soluble in imidazolium-based ionic liquids?, J. Am. Chem. Soc. 126(16) (2004) 5300-5308. [133] F. Yang, X. Wang, Y. Liu, Y. Yang, M. Zhao, X. Liu, W. Li, Understanding CO2 capture kinetics and energetics by ionic liquids with molecular dynamics simulation, RSC Adv. 10(24) (2020) 13968-13974. [134] M. Klähn, A. Seduraman, What determines CO2 solubility in ionic liquids? A molecular simulation study, J. Phys. Chem. B 119(31) (2015) 10066-10078. [135] A.P. Sunda, Ammonium-based protic ionic liquid doped nafion membranes as anhydrous fuel cell electrolytes, J. Mater. Chem. A 3(24) (2015) 12905-12912. [136] D. Sun, J. Zhou, Ionic liquid confined in nafion: Toward molecular-level understanding, AlChE J. 59(7) (2013) 2630-2639. [137] J. Mai, D. Sun, X. Quan, L. Li, J. Zhou, Mesoscopic structure of nafion-ionic liquid membrane using dissipative particle dynamics simulations, Acta Phys.-Chim. Sin. 32(7) (2016) 1649-1657. [138] J. Vatamanu, O. Borodin, G.D. Smith, Molecular insights into the potential and temperature dependences of the differential capacitance of a roomtemperature ionic liquid at graphite electrodes, J. Am. Chem. Soc. 132(42) (2010) 14825-14833. [139] Y. Shim, H.J. Kim, Nanoporous carbon supercapacitors in an ionic liquid: A computer simulation study, ACS Nano 4(4) (2010) 2345-2355. [140] G. Feng, S. Li, V. Presser, P.T. Cummings, Molecular insights into carbon supercapacitors based on room-temperature ionic liquids, J. Phys. Chem. Lett. 4(19) (2013) 3367-3376. [141] T. Yan, C.J. Burnham, M.G. Del Pópolo, G.A. Voth, Molecular dynamics simulation of ionic liquids: The effect of electronic polarizability, J. Phys. Chem. B 108(32) (2004) 11877-11881. [142] N.M. Micaelo, A.M. Baptista, C.M. Soares, Parametrization of 1-butyl-3-methylimidazolium hexafluorophosphate/nitrate ionic liquid for the gromos force field, J. Phys. Chem. B 110(29) (2006) 14444-14451. [143] M.S. Kelkar, E.J. Maginn, Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl)imide as studied by atomistic simulations, J. Phys. Chem. B 111(18) (2007) 4867-4876. [144] M.R. Watry, G.L. Richmond, Comparison of the adsorption of linear alkanesulfonate and linear alkylbenzenesulfonate surfactants at liquid interfaces, J. Am. Chem. Soc. 122(5) (2000) 875-883. [145] Z.-Y. Liu, N. Wei, C. Wang, H. Zhou, L. Zhang, Q. Liao, L. Zhang, Interfacial assignment of branched-alkyl benzene sulfonates: A molecular simulation, AIP Adv. 5(11) (2015) 117203. [146] F.S. Lima, M.F.C. Andrade, L. Mortara, L. Gustavo Dias, I.M. Cuccovia, H. Chaimovich, Ion dehydration controls adsorption at the micellar interface: Hydrotropic ions, Phys. Chem. Chem. Phys. 19(45) (2017) 30658-30666. [147] G. Hantal, M. Sega, G. Horvai, P. Jedlovszky, Contribution of different molecules and moieties to the surface tension in aqueous surfactant solutions, J. Phys. Chem. C 123(27) (2019) 16660-16670. [148] E. Riccardi, T. Tichelkamp, Calcium ion effects on the water/oil interface in the presence of anionic surfactants, Colloids Surf. A 573(2019) 246-254. [149] A.V. Sangwai, R. Sureshkumar, Coarse-grained molecular dynamics simulations of the sphere to rod transition in surfactant micelles, Langmuir 27(11) (2011) 6628-6638. [150] F.C. Wang, H.A. Wu, Enhanced oil droplet detachment from solid surfaces in charged nanoparticle suspensions, Soft Matter 9(33) (2013) 7974-7980. [151] A. Aminian, B. ZareNezhad, Oil-detachment from the calcium carbonate surfaces via the actions of surfactant, nanoparticle and low salinity brine: An insight from molecular dynamic simulation, Chem. Eng. Sci. 202(2019) 373-382. [152] F. Liu, W. Zhou, D. Liu, F. Chen, J. Wei, Coarse-grained molecular dynamics study on the rheological behaviors of surfactant aqueous solution, J. Mol. Liq. 265(2018) 572-577. [153] G. Zhao, Z. Yan, F. Qian, H. Sun, X. Lu, H. Fan, Molecular simulation study on the rheological properties of a ph-responsive clean fracturing fluid system, Fuel 253(2019) 677-684. [154] G.S. Manning, Polyelectrolytes, Annu. Rev. Phys. Chem. 23(1) (1972) 117-140. [155] G.S. Manning, The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides, Q. Rev. Biophys. 11(2) (1978) 179-246. [156] Y.L. Zhu, Z.Y. Lu, G. Milano, A.C. Shi, Z.Y. Sun, Hybrid particle-field molecular dynamics simulation for polyelectrolyte systems, Phys. Chem. Chem. Phys. 18(14) (2016) 9799-9808. [157] E.A. Zuluaga-Hernández, B.A. Hoyos, Effect of cationic polyelectrolytes addition in cement cohesion, Dyna-Bilbao 81(188) (2014) 222-228. [158] M.P. Weir, A.J. Parnell, Water soluble responsive polymer brushes, PolymersBasel 3(4) (2011) 2107-2132. [159] K. Ishizu, K. Toyoda, T. Furukawa, A. Sogabe, Electrostatic interaction of anionic/nonionic polyelectrolyte prototype copolymer brushes with cationic linear polyelectrolyte, Macromolecules 37(2004) 3954-3957. [160] L.J. Abbott, H.G. Buss, J.L. Thelen, B.D. McCloskey, J.W. Lawson, Polyanion electrolytes with well-ordered ionic layers in simulations and experiment, Macromolecules 52(15) (2019) 5518-5528. [161] L. Ghimici, S. Dragan, Behaviour of cationic polyelectrolytes upon binding of electrolytes: Effects of polycation structure, counterions and nature of the solvent, Colloid. Polym. Sci. 280(2002) 130-134. [162] Q.H. Hao, G. Xia, B. Miao, H.G. Tan, X.H. Niu, L.Y. Liu, Morphological response of a spherical polyelectrolyte brush to solvent quality and electrostatic interaction strength, Macromolecules 51(21) (2018) 8513-8521. [163] T. Terao, Molecular simulation of charged polymers: The interplay between electrostatic and entropic effect, Flow Dyn. 832(1) (2006) 269-274. [164] T. Ni, G.-S. Huang, P. Gao, Y.-T. Xu, M.-Z. Yang, Molecular simulation of salt ion effect on anionic polyelectrolyte chain, J. Macromol. Sci. Part B-Phys. 51(1) (2011) 60-69. [165] G. Luque-Caballero, A. Martin-Molina, M. Quesada-Perez, Polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent counterions: A monte carlo simulation study, J. Chem. Phys. 140(17) (2014) 174701. [166] T. Kurinomaru, K. Kuwada, S. Tomita, T. Kameda, K. Shiraki, Noncovalent pegylation through protein-polyelectrolyte interaction: Kinetic experiment and molecular dynamics simulation, J. Phys. Chem. B 121(28) (2017) 6785-6791. [167] Y. Xu, J. Feng, Y.Z. Shang, H.L. Liu, Molecular dynamics simulation for the effect of chain length of spacer and tail of cationic gemini surfaetant on the complex with anionic polyelectrolyte, Chin. J. Chem. Eng. 15(2007) 560-565. [168] X. Duan, Y. Li, R. Zhang, T. Shi, L. An, Q. Huang, Regulation of anionic lipids in binary membrane upon the adsorption of polyelectrolyte: A Monte Carlo simulation, AIP Adv. 3(6) (2013) 062128. [169] H. Wang, H. Zhang, S. Yuan, Z. Xu, C. Liu, Molecular dynamics study of the structure of an oppositely charged polyelectrolyte and an ionic surfactant at the air/water interface, Colloids Surf. A 454(2014) 104-112. [170] K.W. Kolewe, K.M. Dobosz, K.A. Rieger, C.C. Chang, T. Emrick, J.D. Schiffman, Antifouling electrospun nanofiber mats functionalized with polymer zwitterions, ACS. Appl. Mater. Inter. 8(41) (2016) 27585-27593. [171] Z. Chen, J. Huo, L. Hao, J. Zhou, Multiscale modeling and simulations of responsive polymers, Curr. Opin. Chem. Eng. 23(2019) 21-33. [172] H.H. Kung, New materials for catalysis and energy storage devices, AIChE J. 62(10) (2016) 3518-3528. [173] J.W. Zhang, L. Zhang, X.W. Cui, L. Gong, L. Xiang, C. Shi, W.J.H. Hu, H.B. Zeng, Scalable polyzwitterion-polydopamine coating for regenerable oil/water separation and underwater self-cleaning of stubborn heavy oil fouling without pre-hydrationt, Chem. Commun. 54(70) (2018) 9734-9737. [174] Q. Shao, A computational avenue towards understanding and design of zwitterionic anti-biofouling materials, Mol. Simulat. 45(14-15) (2019) 1211-1222. [175] Q. Shao, S.Y. Jiang, Influence of charged groups on the properties of zwitterionic moieties: A molecular simulation study, J. Phys. Chem. B 118(27) (2014) 7630-7637. [176] Q. Shao, S.Y. Jiang, Effect of carbon spacer length on zwitterionic carboxybetaines, J. Phys. Chem. B 117(5) (2013) 1357-1366. [177] Z. Chen, M. Liao, L. Zhang, J. Zhou, Molecular simulations on the hydration and underwater oleophobicity of zwitterionic self-assembled monolayers, AlChE J. (2020) e17103. [178] L. Mi, S.Y. Jiang, Integrated antimicrobial and nonfouling zwitterionic polymers, Angew. Chem. Int. Edit. 53(7) (2014) 1746-1754. [179] R. Nagumo, T. Ito, K. Akamatsu, R. Miura, A. Suzuki, H. Tsuboi, N. Hatakeyama, H. Takaba, A. Miyamoto, Molecular dynamics simulations for microscopic behavior of water molecules in the vicinity of zwitterionic self-assembled monolayers, Polym. J. 44(11) (2012) 1149-1153. [180] Y. He, J. Hower, S.F. Chen, M.T. Bernards, Y. Chang, S.Y. Jiang, Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water, Langmuir 24(18) (2008) 10358-10364. [181] M.R. Liao, Y.T. Li, Z. Chen, J. Zhou, Computer simulations of underwater oil adhesion of self-assembled monolayers on au (111), Mol. Simulat. 46(9) (2020) 713-720. [182] Y.L. Liu, D. Zhang, B.P. Ren, X. Gong, L.J. Xu, Z.Q. Feng, Y. Chang, Y. He, J. Zheng, Molecular simulations and understanding of antifouling zwitterionic polymer brushes, J. Mater. Chem. B 8(17) (2020) 3814-3828. [183] Y. Xiang, R.G. Xu, Y.S. Leng, Molecular simulations of the hydration behavior of a zwitterion brush array and its antifouling property in an aqueous environment, Langmuir 34(6) (2018) 2245-2257. [184] J.H. Huo, Z. Chen, J. Zhou, Zwitterionic membrane via nonsolvent induced phase separation: A computer simulation study, Langmuir 35(5) (2019) 1973-1983. [185] W.F. Min, D.H. Zhao, X.B. Quan, D.L. Sun, L.B. Li, J. Zhou, Computer simulations on the ph-sensitive tri-block copolymer containing zwitterionic sulfobetaine as a novel anti-cancer drug carrier, Colloid Surf. B-Biointerfaces 152(2017) 260-268. [186] M.R. Liao, H.Y. Liu, H.Y. Guo, J. Zhou, Mesoscopic structures of poly (carboxybetaine) block copolymer and poly(ethylene glycol) block copolymer in solutions, Langmuir 33(30) (2017) 7575-7582. [187] L.X. Hao, L. Lin, J. Zhou, Ph-responsive zwitterionic copolymer dha-pblg-pcb for targeted drug delivery: A computer simulation study, Langmuir 35(5) (2019) 1944-1953. [188] A. Mafi, D. Hu, K.C. Chou, Interactions of sulfobetaine zwitterionic surfactants with water on water surface, Langmuir 32(42) (2016) 10905-10911. [189] J. Liu, J. Zhou, Hydrolysis-controlled protein adsorption and antifouling behaviors of mixed charged self-assembled monolayer: A molecular simulation study, Acta Biomaterialia 40(2016) 23-30. [190] G. Cheng, M.R. Liao, D.H. Zhao, J. Zhou, Molecular understanding on the underwater oleophobicity of self assembled monolayers: Zwitterionic versus nonionic, Langmuir 33(7) (2017) 1732-1741. [191] M.R. Liao, G. Cheng, J. Zhou, Underwater superoleophobicity of pseudozwitterionic SAMs: Effects of chain length and ionic strength, J. Phys. Chem. C 121(32) (2017) 17390-17401. [192] J.D. Watson, F.H.C. Crick, Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid, Nature 171(4356) (1953) 737-738. [193] J.T.Y. Kung, D. Colognori, J.T. Lee, Long noncoding rnas: Past, present, and future, Genetics 193(3) (2013) 651. [194] A.Y.L. Sim, Nucleic acid polymeric properties and electrostatics: Directly comparing theory and simulation with experiment, Adv. Colloid Interface Sci. 232(2016) 49-56. [195] C. Sagui, T.A. Darden, Molecular dynamics simulations of biomolecules: Longrange electrostatic effects, Annu. Rev. Biophys. Biomol. Struct. 28(1) (1999) 155-179. [196] Y. Bai, R. Das, I.S. Millett, D. Herschlag, S. Doniach, Probing counterion modulated repulsion and attraction between nucleic acid duplexes in solution, Proc. Natl. Acad. Sci. U.S.A. 102(4) (2005) 1035. [197] G.C.L. Wong, L. Pollack, Electrostatics of strongly charged biological polymers: Ion-mediated interactions and self-organization in nucleic acids and proteins, Annu. Rev. Phys. Chem. 61(1) (2010) 171-189. [198] P. Auffinger, Y. Hashem, Nucleic acid solvation: From outside to insight, Curr. Opin. Struct. Biol. 17(3) (2007) 325-333. [199] W. Lv, The adsorption of DNA bases on neutral and charged (8, 8) carbonnanotubes, Chem. Phys. Lett. 514(4) (2011) 311-316. [200] N.M. Fischer, M.D. Polêto, J. Steuer, D. van der Spoel, Influence of Na+ and Mg2+ ions on rna structures studied with molecular dynamics simulations, Nucleic Acids Res. 46(10) (2018) 4872-4882. [201] W. Li, L. Nordenskiöld, Y. Mu, Sequence-specific Mg2+-DNA interactions: A molecular dynamics simulation study, J. Phys. Chem. B 115(49) (2011) 14713-14720. [202] S. Muraru, C.G.G. Samoila, E.I. Slusanschi, J.S. Burns, M. Ionita, Molecular dynamics simulations of DNA adsorption on graphene oxide and reduced graphene Oxide-PEG-NH2 in the presence of Mg2+ and Cl- ions, Coatings 10(3) (2020) 289. [203] A. Martín-Molina, G. Luque-Caballero, J. Faraudo, M. Quesada-Pérez, J. Maldonado-Valderrama, Adsorption of DNA onto anionic lipid surfaces, Adv. Colloid Interface Sci. 206(2014) 172-185. [204] S. Yup Lee, Y. Fujitsuka, D.H. Kim, S. Takada, Roles of physical interactions in determining protein-folding mechanisms: Molecular simulation of protein g and a spectrin SH3, Proteins Struct. Funct. Bioinf. 55(1) (2004) 128-138. [205] A. Azia, Y. Levy, Nonnative electrostatic interactions can modulate protein folding: Molecular dynamics with a grain of salt, J. Mol. Biol. 393(2) (2009) 527-542. [206] Y. Duan, P.A. Kollman, Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution, Science 282(5389) (1998) 740. [207] T. Mittag, S. Orlicky, W.Y. Choy, X. Tang, H. Lin, F. Sicheri, L. Kay, M. Tyers, J. Forman-Kay, Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor, Proc. Natl. Acad. Sci. USA. 105(2008) 17772-17777. [208] D. Ganguly, S. Otieno, B. Waddell, L. Iconaru, R. Kriwacki, J. Chen, Electrostatically accelerated coupled binding and folding of intrinsically disordered proteins, J. Mol. Biol. 422(2012) 674-684. [209] A.K. Srivastav, S.K. Gupta, U. Kumar, A molecular simulation approach towards the development of universal nanocarriers by studying the ph-and electrostatic-driven changes in the dynamic structure of albumin, RSC Adv. 10(23) (2020) 13451-13459. [210] A.R. Puente-Santiago, D. Rodríguez-Padrón, X. Quan, M.J. Muñoz Batista, L.O. Martins, S. Verma, R.S. Varma, J. Zhou, R. Luque, Unprecedented wiring efficiency of sulfonated graphitic carbon nitride materials: Toward highperformance amperometric recombinant cota laccase biosensors, ACS Sustain. Chem. Eng. 7(1) (2019) 1474-1484. [211] M. Luo, Y. Gao, S. Yang, X. Quan, D. Sun, K. Liang, J. Li, J. Zhou, Computer simulations of the adsorption of an n-terminal peptide of statherin, sn15, and its mutants on hydroxyapatite surfaces, Phys. Chem. Chem. Phys. 21(18) (2019) 9342-9351. [212] W. Zhuang, X. Quan, Z. Wang, W. Zhou, P. Yang, L. Ge, B. Villacorta Hernandez, J. Wu, M. Li, J. Zhou, C. Zhu, H. Ying, Interfacial microenvironment for lipase immobilization: Regulating the heterogeneity of graphene oxide, Chem. Eng. J. 394(2020) 125038. [213] H. Zheng, S.J. Yang, Y.C. Zheng, Y. Cui, Z. Zhang, J.Y. Zhong, J. Zhou, Electrostatic effect of functional surfaces on the activity of adsorbed enzymes: Simulations and experiments, ACS Appl. Mater. Interfaces 12(31) (2020) 35676-35687. [214] D. Zhao, Y. Wang, Q. Su, L. Li, J. Zhou, Lysozyme adsorption on porous organic cages: A molecular simulation study, Langmuir 36(41) (2020) 12299-12308. [215] J. Zhou, S. Chen, S. Jiang, Orientation of adsorbed antibodies on charged surfaces by computer simulation based on a united-residue model, Langmuir 19(8) (2003) 3472-3478. [216] J. Zhou, H.K. Tsao, Y.J. Sheng, S. Jiang, Monte Carlo simulations of antibody adsorption and orientation on charged surfaces, J. Chem. Phys. 121(2) (2004) 1050-1057. [217] J. Zhou, J. Zheng, S. Jiang, Molecular simulation studies of the orientation and conformation of cytochrome c adsorbed on self-assembled monolayers, J. Phys. Chem. B 108(45) (2004) 17418-17424. [218] G. Yu, J. Liu, J. Zhou, Mesoscopic coarse-grained simulations of lysozyme adsorption, J. Phys. Chem. B 118(17) (2014) 4451-4460. [219] J. Liu, C. Liao, J. Zhou, Multiscale simulations of protein G B1 adsorbed on charged self-assembled monolayers, Langmuir 29(36) (2013) 11366-11374. [220] Y. Xie, J. Zhou, S. Jiang, Parallel tempering monte carlo simulations of lysozyme orientation on charged surfaces, J. Chem. Phys. 132(6) (2010) 065101. [221] D. Zhao, J. Zhou, Electrostatics-mediated α-chymotrypsin inhibition by functionalized single-walled carbon nanotubes, Phys. Chem. Chem. Phys. 19(2) (2017) 986-995. [222] J. Liu, C. Peng, G. Yu, J. Zhou, Molecular simulation study of feruloyl esterase adsorption on charged surfaces: Effects of surface charge density and ionic strength, Langmuir 31(39) (2015) 10751-10763. [223] C. Peng, J. Liu, Y. Xie, J. Zhou, Molecular simulations of cytochrome c adsorption on positively charged surfaces: The influence of anion type and concentration, Phys. Chem. Chem. Phys. 18(15) (2016) 9979-9989. [224] G. Yu, J. Liu, J. Zhou, Mesoscopic coarse-grained simulations of hydrophobic charge induction chromatography (hcic) for protein purification, AIChE J. 61(6) (2015) 2035-2047. [225] Y. Xie, C. Liao, J. Zhou, Effects of external electric fields on lysozyme adsorption by molecular dynamics simulations, Biophys. Chem. 179(2013) 26-34. [226] Y. Xie, Y. Pan, R. Zhang, Y. Liang, Z. Li, Modulating protein behaviors on responsive surface by external electric fields: A molecular dynamics study, Appl. Surf. Sci. 326(2015) 55-65. [227] X. Quan, J. Liu, J. Zhou, Multiscale modeling and simulations of protein adsorption: Progresses and perspectives, Curr. Opin. Colloid Interface Sci. 41(2019) 74-85. [228] Y. Xie, M. Liu, J. Zhou, Molecular dynamics simulations of peptide adsorption on self-assembled monolayers, Appl. Surf. Sci. 258(20) (2012) 8153-8159. [229] Y. Xie, Z. Li, J. Zhou, Hamiltonian replica exchange simulations of glucose oxidase adsorption on charged surfaces, Phys. Chem. Chem. Phys. 20(21) (2018) 14587-14596. [230] K.L. Jones, C.R. O’Melia, Protein and humic acid adsorption onto hydrophilic membrane surfaces: Effects of ph and ionic strength, J. Membr. Sci. 165(1) (2000) 31-46. [231] S. Pasche, J. Vörös, H.J. Griesser, N.D. Spencer, M. Textor, Effects of ionic strength and surface charge on protein adsorption at pegylated surfaces, J. Phys. Chem. B 109(37) (2005) 17545-17552. [232] R. Schlapak, D. Armitage, N. Saucedo-Zeni, W. Chrzanowski, M. Hohage, D. Caruana, S. Howorka, Selective protein and DNA adsorption on pll-peg films modulated by ionic strength, Soft Matter 5(3) (2009) 613-621. [233] M.G. Cacace, E.M. Landau, J.J. Ramsden, The hofmeister series: Salt and solvent effects on interfacial phenomena, Q. Rev. Biophys. 30(3) (1997) 241-277. [234] B.N. Johnson, R. Mutharasan, Ph effect on protein g orientation on gold surfaces and characterization of adsorption thermodynamics, Langmuir 28(17) (2012) 6928-6934. [235] Y. Xie, W. Gong, J. Jin, Z. Zhao, Z. Li, J. Zhou, Molecular simulations of lysozyme adsorption on an electrically responsive mixed self-assembled monolayer, Appl. Surf. Sci. 506(2020) 144962. [236] W. Shi, M.R. Chance, Metalloproteomics: Forward and reverse approaches in metalloprotein structural and functional characterization, Curr. Opin. Chem. Biol. 15(1) (2011) 144-148. [237] D. Zhao, L. Li, J. Zhou, Simulation insight into the cytochrome c adsorption on graphene and graphene oxide surfaces, Appl. Surf. Sci. 428(2018) 825-834. [238] C. Yang, C. Peng, D. Zhao, C. Liao, J. Zhou, X. Lu, Molecular simulations of myoglobin adsorbed on rutile (110) and (001) surfaces, Fluid Phase Equilib. 362(2014) 349-354. [239] T. Utesch, D. Millo, M.A. Castro, P. Hildebrandt, I. Zebger, M.A. Mroginski, Effect of the protonation degree of a self-assembled monolayer on the immobilization dynamics of a [NiFe] hydrogenase, Langmuir 29(2) (2013) 673-682. [240] R. Sankaran, S. Pau Loke, J.-S. Chang, Biodiesel production using immobilized lipase: Feasibility and challenges: Producing biodiesel from biomass oil via immobilized-lipase catalyzed alcoholysis, Biofuels, Bioprod. Biorefin. 10(6) (2016) 896-916. [241] M. Hoarau, S. Badieyan, E.N.G. Marsh, Immobilized enzymes: Understanding enzyme -surface interactions at the molecular level, Org. Biomol. Chem. 15(45) (2017) 9539-9551. [242] J.J. Davis, Molecular bioelectronics, Philos. Trans. Ser. A, Math. Phys. Eng. Sci. 361(1813) (2003) 2807-2825. [243] T. Nöll, G. Nöll, Strategies for “wiring” redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology, Chem. Soc. Rev. 40(7) (2011) 3564-3576. [244] S. Prabhulkar, H. Tian, X. Wang, J.-J. Zhu, C.-Z. Li, Engineered proteins: Redox properties and their applications, Antioxid. Redox Signal. 17(12) (2012) 1796-1822. [245] C. Peng, J. Liu, J. Zhou, Molecular simulations of cytochrome c adsorption on a bare gold surface: Insights for the hindrance of electron transfer, J. Phys. Chem. C 119(35) (2015) 20773-20781. [246] J. Liu, Y. Xie, C. Peng, G. Yu, J. Zhou, Molecular understanding of laccase adsorption on charged self-assembled monolayers, J. Phys. Chem. B 121(47) (2017) 10610-10617. [247] S. Yang, J. Liu, X. Quan, J. Zhou, Bilirubin oxidase adsorption onto charged selfassembled monolayers: Insights from multiscale simulations, Langmuir 34(33) (2018) 9818-9828. [248] S. Yang, J. Liu, H. Zheng, J. Zhong, J. Zhou, Simulated revelation of the adsorption behaviours of acetylcholinesterase on charged self-assembled monolayers, Nanoscale 12(6) (2020) 3701-3714. [249] D. Zhao, C. Peng, C. Liao, J. Zhou, Computer simulation of bioenergy-oriented enzyme immobilization, CIESC J. 65(2014) 1828-1834. (in Chinese). [250] D. Zhao, C. Peng, J. Zhou, Lipase adsorption on different nanomaterials: A multi-scale simulation study, Phys. Chem. Chem. Phys. 17(2) (2015) 840-850. [251] Z. Fu, W. Xu, G. Chen, Z. Wang, D. Lu, J. Wu, Z. Liu, Molecular dynamics simulations reveal how graphene oxide stabilizes and activates lipase in an anhydrous gas, Phys. Chem. Chem. Phys. 21(45) (2019) 25425-25430. [252] E. Heikkilä, H. Martinez-Seara, A.A. Gurtovenko, M. Javanainen, H. Häkkinen, I. Vattulainen, J. Akola, Cationic au nanoparticle binding with plasma membrane-like lipid bilayers: Potential mechanism for spontaneous permeation to cells revealed by atomistic simulations, J. Phys. Chem. C 118(20) (2014) 11131-11141. [253] H.-M. Ding, Y.-Q. Ma, Design maps for cellular uptake of gene nanovectors by computer simulation, Biomaterials 34(33) (2013) 8401-8407. [254] H. Ding, J. Li, N. Chen, X. Hu, X. Yang, L. Guo, Q. Li, X. Zuo, L. Wang, Y. Ma, C. Fan, DNA nanostructure-programmed like-charge attraction at the cellmembrane interface, ACS Cent. Sci. 4(10) (2018) 1344-1351. [255] Y. Li, B. Yuan, K. Yang, X. Zhang, B. Yan, D. Cao, Counterintuitive cooperative endocytosis of like-charged nanoparticles in cellular internalization: Computer simulation and experiment, Nanotechnology 28(8) (2017) 085102. [256] P. Chen, Z. Huang, J. Liang, T. Cui, X. Zhang, B. Miao, L.-T. Yan, Diffusion and directionality of charged nanoparticles on lipid bilayer membrane, ACS Nano 10(12) (2016) 11541-11547. [257] H. Lee, R.G. Larson, Molecular dynamics simulations of pamam dendrimerinduced pore formation in dppc bilayers with a coarse-grained model, J. Phys. Chem. B 110(37) (2006) 18204-18211. [258] H. Lee, R.G. Larson, Coarse-grained molecular dynamics studies of the concentration and size dependence of fifth-and seventh-generation pamam dendrimers on pore formation in dmpc bilayer, J. Phys. Chem. B 112(26) (2008) 7778-7784. [259] W.D. Tian, Y.Q. Ma, Ph-responsive dendrimers interacting with lipid membranes, Soft Matter 8(9) (2012) 2627-2632. [260] J. Lin, H. Zhang, Z. Chen, Y. Zheng, Penetration of lipid membranes by gold nanoparticles: Insights into cellular uptake, cytotoxicity, and their relationship, ACS Nano 4(9) (2010) 5421-5429. [261] X. Quan, C. Peng, D. Zhao, L. Li, J. Fan, J. Zhou, Molecular understanding of the penetration of functionalized gold nanoparticles into asymmetric membranes, Langmuir 33(1) (2017) 361-371. [262] X. Quan, D. Zhao, L. Li, J. Zhou, Understanding the cellular uptake of phresponsive zwitterionic gold nanoparticles: A computer simulation study, Langmuir 33(50) (2017) 14480-14489. [263] F. Simonelli, D. Bochicchio, R. Ferrando, G. Rossi, Monolayer-protected anionic au nanoparticles walk into lipid membranes step by step, J. Phys. Chem. Lett. 6(16) (2015) 3175-3179. [264] R. Gupta, B. Rai, Penetration of gold nanoparticles through human skin: Unraveling its mechanisms at the molecular scale, J. Phys. Chem. B 120(29) (2016) 7133-7142. [265] K. Shimizu, H. Nakamura, S. Watano, Md simulation study of direct permeation of a nanoparticle across the cell membrane under an external electric field, Nanoscale 8(23) (2016) 11897-11906. [266] X. Chen, D.P. Tieleman, Q. Liang, Modulating interactions between ligandcoated nanoparticles and phase-separated lipid bilayers by varying the ligand density and the surface charge, Nanoscale 10(5) (2018) 2481-2491. [267] S.Y. Noh, A. Nash, R. Notman, The aggregation of striped nanoparticles in mixed phospholipid bilayers, Nanoscale 12(8) (2020) 4868-4881. |
[1] | Lusheng Zhai, Bo Xu, Haiyan Xia, Ningde Jin. Simultaneous measurement of velocity profile and liquid film thickness in horizontal gas-liquid slug flow by using ultrasonic Doppler method[J]. 中国化学工程学报, 2023, 58(6): 323-340. |
[2] | Huan-Huan Yin, Yin-Lei Han, Xiao Yan, Yi-Xin Guan. Proanthocyanidins prevent tau protein aggregation and disintegrate tau filaments[J]. 中国化学工程学报, 2023, 57(5): 63-71. |
[3] | Qiaoqiao Liu, Guihong Lin, Jian Zhou, Liangliang Huang, Chang Liu. Hydrogen-bond mediated and concentrate-dependent NaHCO3 crystal morphology in NaHCO3–Na2CO3 aqueous solution: Experiments and computer simulations[J]. 中国化学工程学报, 2023, 55(3): 49-58. |
[4] | Baodong Zhao, Yinglei Wang, Fulei Gao, Yajing Liu, Weixiao Liu, Feng Ding. Understanding the alkyl effect of geminal dinitropropyl ester energetic plasticizers on hydroxyl terminated polybutadiene (HTPB): Simultaneous tuning on low temperature behavior and processability[J]. 中国化学工程学报, 2023, 54(2): 364-371. |
[5] | Peng Yang, Shengzhe Jia, Yan Wang, Zongqiu Li, Songgu Wu, Jingkang Wang, Junbo Gong. Dissolution behavior, thermodynamic and kinetic analysis of malonamide by experimental measurement and molecular simulation[J]. 中国化学工程学报, 2023, 53(1): 260-269. |
[6] | Hojatollah Moradi, Hedayat Azizpour, Hossein Bahmanyar, Mohammad Emamian. Molecular dynamic simulation of carbon dioxide, methane, and nitrogen adsorption on Faujasite zeolite[J]. 中国化学工程学报, 2022, 43(3): 70-76. |
[7] | Tongan Yan, Minman Tong, Qingyuan Yang, Dahuan Liu, Yandong Guo, Chongli Zhong. Large-scale simulations of CO2 diffusion in metal-organic frameworks with open Cu sites[J]. 中国化学工程学报, 2022, 42(2): 1-9. |
[8] | Puxu Liu, Yong Wang, Yang Chen, Xiaoqing Wang, Jiangfeng Yang, Libo Li, Jinping Li. Stable titanium metal-organic framework with strong binding affinity for ethane removal[J]. 中国化学工程学报, 2022, 42(2): 35-41. |
[9] | Tongan Yan, Dahuan Liu, Qingyuan Yang, Chongli Zhong. Screening and design of COF-based mixed-matrix membrane for CH4/N2 separation[J]. 中国化学工程学报, 2022, 42(2): 170-177. |
[10] | Jule Ma, Peiwen Xiao, Pingmei Wang, Xue Han, Jianhui Luo, Ruifang Shi, Xuan Wang, Xianyu Song, Shuangliang Zhao. Molecular dynamics simulation study on π-π stacking of Gemini surfactants in oil/water systems[J]. 中国化学工程学报, 2022, 50(10): 335-346. |
[11] | Zhaoyang Yu, Jing Li, Xianren Zhang. A new hypothesis for cavitation nucleation in gas saturated solutions: Clustering of gas molecules lowers significantly the surface tension[J]. 中国化学工程学报, 2022, 50(10): 347-351. |
[12] | Yumeng Zhang, Yingying Zhang, Xueling Pan, Yao Qin, Jiawei Deng, Shanshan Wang, Qingwei Gao, Yudan Zhu, Zhuhong Yang, Xiaohua Lu. Molecular insights on Ca2+/Na+ separation via graphene-based nanopores: The role of electrostatic interactions to ionic dehydration[J]. 中国化学工程学报, 2022, 41(1): 220-229. |
[13] | Zilong Liu, Ge Zhao, Xiao Zhang, Lei Gao, Junqing Chen, Weichao Sun, Guanggang Zhou, Guiwu Lu. Superior performance porous carbon nitride nanosheets for helium separation from natural gas: Insights from MD and DFT simulations[J]. 中国化学工程学报, 2021, 37(9): 46-53. |
[14] | Xia Chen, Yan Wang, Lianying Wu, Weitao Zhang, Yangdong Hu. Testing and validation of a self-diffusion coefficient model based on molecular dynamics simulations[J]. 中国化学工程学报, 2021, 36(8): 138-145. |
[15] | Mingming Zhai, Tomohisa Yoshioka, Jianhua Yang, Jinqu Wang, Dinglin Zhang, Jinming Lu, Yan Zhang. Molecular dynamics simulation of small gas molecule permeation through CAU-1 membrane[J]. 中国化学工程学报, 2021, 33(5): 104-111. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||