[1] S. Shamaila, A.K.L. Sajjad, A. Iqbal, Modifications in development of graphene oxide synthetic routes, Chem. Eng. J. 294(2016) 458-477. [2] D.R. Dreyer, A.D. Todd, C.W. Bielawski, Harnessing the chemistry of graphene oxide, Chem. Soc. Rev. 43(2014) 5288-5301. [3] S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nat. Nanotech. 4(2009) 217-224. [4] L. Sun, Structure and synthesis of graphene oxide, Chin. J. Chem. Eng. 27(2019) 2251-2260. [5] M.F. El-Kady, Y. Shao, R.B. Kaner, Graphene for batteries, supercapacitors and beyond, Nat. Rev. Mater. 1(2016) 1-14. [6] R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A. K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes, Science 343(2014) 752-754. [7] C. Su, M. Acik, K. Takai, J. Lu, S.-J. Hao, Y. Zheng, P. Wu, Q. Bao, T. Enoki, Y.J. Chabal, K.P. Loh, Probing the catalytic activity of porous graphene oxide and the origin of this behaviour, Nat. Commun. 3(2012) 1298. [8] D. He, J. Wu, Z. Liu, L. Shen, N. Bao, Recent advances in preparation of graphene for applications, CIESC J. 66(2015) 2888-2894(in Chinese). [9] Z. Xu, C. Gao, Graphene chiral liquid crystals and macroscopic assembled fibres, Nat. Commun. 2(2011) 571. [10] Z. Liu, W. Wang, X. Ju, R. Xie, L. Chu, Graphene-based membranes for molecular and ionic separations in aqueous environments, Chin. J. Chem. Eng. 25(2017) 1598-1605. [11] X. Chen, G. Liu, H. Zhang, Y. Fan, Fabrication of graphene oxide composite membranes and their application for pervaporation dehydration of butanol, Chin. J. Chem. Eng. 23(2015) 1102-1109. [12] L. Chen, G. Shi, J. Shen, B. Peng, B. Zhang, Y. Wang, F. Bian, J. Wang, D. Li, Z. Qian, G. Xu, G. Liu, J. Zeng, L. Zhang, Y. Yang, G. Zhou, M. Wu, W. Jin, J. Li, H. Fang, Ion sieving in graphene oxide membranes via cationic control of interlayer spacing, Nature 550(2017) 415-418. [13] D. Parviz, S.A. Shah, M.G.B. Odom, W. Sun, J.L. Lutkenhaus, M.J. Green, Tailored network formation in graphene oxide gels, Langmuir 34(2018) 8550-8559. [14] J.-E. Kim, J.-H. Oh, M. Kotal, N. Koratkar, I.-K. Oh, Self-assembly and morphological control of three-dimensional macroporous architectures built of two-dimensional materials, Nano Today 14(2017) 100-123. [15] R. Ruoff, A means to an end, Nature 483(2012) S42. [16] C. Chen, Z. Xu, Y. Han, H. Sun, C. Gao, Redissolution of flower-shaped graphene oxide powder with high density, ACS Appl. Mater. Interfaces 8(2016) 8000-8007. [17] L. Qiu, J.Z. Liu, S.L.Y. Chang, Y. Wu, D. Li, Biomimetic superelastic graphenebased cellular monoliths, Nat. Commun. 3(2012) 1241. [18] D. Parviz, S.D. Metzler, S. Das, F. Irin, M.J. Green, Tailored crumpling and unfolding of spray-dried pristine graphene and graphene oxide sheets, Small 11(2015) 2661-2668. [19] A. Alazmi, O. El Tall, S. Rasul, M.N. Hedhili, S.P. Patole, P. Costa, A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide, Nanoscale 8(2016) 17782-17787. [20] R. Vehring, Pharmaceutical particle engineering via spray drying, Pharm. Res. 25(2008) 999-1022. [21] A. Gharsallaoui, G. Roudaut, O. Chambin, A. Voilley, R. Saurel, Applications of spray-drying in microencapsulation of food ingredients:An overview, Food Res. Int. 40(2007) 1107-1121. [22] J.J. Shao, W. Lv, Q.H. Yang, Self-assembly of graphene oxide at interfaces, Adv. Mater. 26(2014) 5586-5612. [23] J.Y. Luo, H.D. Jang, T. Sun, L. Xiao, Z. He, A.P. Katsoulidis, M.G. Kanatzidis, J.M. Gibson, J.X. Huang, Compression and aggregation-resistant particles of crumpled soft sheets, ACS Nano 5(2011) 8943-8949. [24] X. Ma, M.R. Zachariah, C.D. Zangmeister, Crumpled nanopaper from graphene oxide, Nano Lett. 12(2012) 486-489. [25] W.-N. Wang, Y. Jiang, P. Biswas, Evaporation-induced crumpling of graphene oxide nanosheets in aerosolized droplets:Confinement force relationship, J. Phys. Chem. Lett. 3(2012) 3228-3233. [26] O. Syll, S. Khalloufi, P. Schuck, Dispersibility and morphology of spray-dried soy powders depending on the spraying system, Dairy Sci. Technol. 93(2013) 431-442. [27] J. Yang, Q. Liao, X. Zhou, X. Liu, J. Tang, Efficient synthesis of graphene-based powder via in situ spray pyrolysis and its application in lithium ion batteries, RSC Adv. 3(2013) 16449-16455. [28] C. Li, Y. Guo, L. Shen, C. Ji, N. Bao, Scalable concentration process of graphene oxide dispersions via cross-flow membrane filtration, Chem. Eng. Sci. 200(2019) 127-137. [29] D. He, L. Shen, X. Zhang, Y. Wang, N. Bao, H.H. Kung, An efficient and ecofriendly solution-chemical route for preparation of ultrastable reduced graphene oxide suspensions, AIChE J. 60(2014) 2757-2764. [30] Y. Shi, C. Li, D. He, L. Shen, N. Bao, Preparation of graphene oxide-cellulose acetate nanocomposite membrane for high-flux desalination, J. Mater. Sci. 52(2017) 13296-13306. [31] A. Negiz, E.S. Lagergren, A. Cinar, Mathematical-models of cocurrent spraydrying, Ind. Eng. Chem. Res. 34(1995) 3289-3302. [32] J. Sloth, K. Jorgensen, P. Bach, A.D. Jensen, S. Kiil, K. Dam-Johansen, Spray drying of suspensions for pharma and bio products:Drying kinetics and morphology, Ind. Eng. Chem. Res. 48(2009) 3657-3664. [33] A. Bueck, M. Peglow, M. Naumann, E. Tsotsas, Population balance model for drying of droplets containing aggregating nanoparticles, AIChE J. 58(2012) 3318-3328. [34] J. Vicente, J. Pinto, J. Menezes, F. Gaspar, Fundamental analysis of particle formation in spray drying, Powder Technol. 247(2013) 1-7. [35] F. Iskandar, L. Gradon, K. Okuyama, Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol, J. Colloid Interface Sci. 265(2003) 296-303. [36] W.D. Wu, R. Amelia, N. Hao, C. Selomulya, D. Zhao, Y.-L. Chiu, X.D. Chen, Assembly of uniform photoluminescent microcomposites using a novel microfluidic-jet-spray-dryer, AIChE J. 57(2011) 2726-2737. [37] W.N. Wang, W. Widiyastuti, I.W. Lenggoro, T.O. Kim, K. Okuyama, Photoluminescence optimization of luminescent nanocomposites fabricated by spray pyrolysis of a colloid-solution precursor, J. Electrochem. Soc. 154(2007) J121-J128. [38] C. Schuetz, J.R. Bruckner, C. Honorato-Rios, Z. Tosheva, M. Anyfantakis, J.P.F. Lagerwall, from equilibrium liquid crystal formation and kinetic arrest to photonic bandgap films using suspensions of cellulose nanocrystals, Crystals 10(2020) 199. [39] S.H. Hong, T.Z. Shen, J.K. Song, Controlling wrinkles and assembly patterns in dried graphene oxide films using lyotropic graphene oxide liquid crystals, Liq. Cryst. 44(2017) 939-947. [40] M. Habibi, M. Adda-Bedia, D. Bonn, Effect of the material properties on the crumpling of a thin sheet, Soft Matter 13(2017) 4029-4034. [41] W.N. Wang, Y. Kaihatsu, F. Iskandar, K. Okuyama, Highly luminous hollow chloroapatite phosphors formed by a template-free aerosol route for solidstate lighting, Chem. Mater. 21(2009) 4685-4691. [42] C.N. Yeh, H. Huang, A.T.O. Lim, R.H. Jhang, C.H. Chen, J. Huang, Binder-free graphene oxide doughs, Nat. Commun. 10(2019) 422. [43] F. Guo, F. Kim, T.H. Han, V.B. Shenoy, J. Huang, R.H. Hurt, Hydration-responsive folding and unfolding in graphene oxide liquid crystal phases, ACS Nano 5(2011) 8019-8025. [44] Z. Xu, C. Gao, Aqueous liquid crystals of graphene oxide, ACS Nano 5(2011) 2908-2915. [45] C. Li, Y. Shi, X. Chen, D. He, L. Shen, N. Bao, Controlled synthesis of graphite oxide:formation process, oxidation kinetics, and optimized conditions, Chem. Eng. Sci. 176(2018) 319-328. [46] H. Xian, T. Peng, H. Sun, J. Wang, The effect of thermal exfoliation temperature on the structure and supercapacitive performance of graphene nanosheets, Nano-Micro Lett. 7(2015) 17-26. [47] K. Krishnamoorthy, M. Veerapandian, K. Yun, S.J. Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation, Carbon 53(2013) 38-49. [48] C. Weng, Y. Shi, D. He, L. Shen, N. Bao, Hydrothermal synthesis of reduced graphene oxide with tunable conductivity, CIESC J. 69(2018) 3263-3269(in Chinese). [49] H. Fang, Y. Zhao, Y. Zhang, Y. Ren, S.L. Baio, Three-dimensional graphene foamfilled elastomer composites with high thermal and mechanical properties, ACS Appl. Mater. Interfaces 9(2017) 26447-26459. |