[1] M.S. Selim, M.A. Shenashen, S.A. El-safty, S.A. Higazy, M.M. Selim, H. Isago, Recent progress in marine foul-release polymeric nanocomposite coatings, Prog. Mater. Sci. 87(2017) 1-32. [2] R. Ciriminna, F.V. Bright, M. Pagliaro, Ecofriendly antifouling marine coatings, ACS Sustain. Chem. Eng. 3(2015) 559-565. [3] T. Arai, H. Harino, M. Ohji, W.J. Langston, Ecotoxicology of Antifouling Biocides, 1st ed., Springer, Berlin Heidelelberg (2009) 1-437. [4] H.K. Okoro, O.S. Fatoki, F.A. Adekola, B.J. Ximba, R.G. Snyman, Sources, environmental levels and toxicity of organotin in marine environment -A review, Asian J. Chem. 23(2011) 473-482. [5] S. Soroldoni, S.E. Martins, I.B. Castro, G.L.L. Pinho, Potential ecotoxicity of metals leached from antifouling paint particles under different salinities, Ecotoxicol. Environ. Saf. 148(2018) 447-452. [6] K.M. Almond, L.D. Trombetta, Copper pyrithione, a booster biocide, induces abnormal muscle and notochord architecture in zebra fish embryogenesis, Ecotoxicology 26(2017) 855-867. [7] J. Zhou, X. Zhang, Y. Yan, J. Hu, H. Wang, Y. Cai, J. Qu, Preparation and characterization of a novel antibacterial acrylate polymer composite modified with capsaicin, Chinese J. Chem. Eng. 27(2019) 3043-3052. [8] R. Chen, Y. Li, M. Yan, X. Sun, H. Han, J. Li, J. Wang, L. Liu, K. Takahashi, Synthesis of hybrid zinc/silyl acrylate copolymers and their surface properties in the microfouling stage, RSC Adv. 6(2016) 13858-13866. [9] Q. Xie, H. Zeng, Q. Peng, C. Bressy, C. Ma, G. Zhang, Self-stratifying silicone coating with nonleaching antifoulant for marine anti-biofouling, Adv. Mater. Interfaces 6(2019) 1900535. [10] Y. Fu, J. Jiang, Q. Zhang, X. Zhan, F. Chen, Correction:robust liquid-repellent coatings based on polymer nanoparticles with excellent self-cleaning and antibacterial performances, J. Mater. Chem. A 5(2017) 275-284. [11] H. Liu, X. Zhan, Q. Zhang, X. Chen, F. Chen, Preparation, surface properties, and antibacterial activity of a poly(dimethyl siloxane) network containing a quaternary ammonium salt side chain, J. Appl. Polym. Sci. 132(2014) 41725-41733. [12] C. Wei, G. Zhang, Q. Zhang, X. Zhan, F. Chen, Silicone oil-infused slippery surfaces based on sol-gel process-induced nanocomposite coatings:A facile approach to highly stable bioinspired surface for biofouling resistance, ACS Appl. Mater. Interfaces 8(2016) 34810-34819. [13] L.J. Xiaofang Li, H. Cai, Y.i. Yuan, X. Wang, Xianyong Lu, Ying Zhu, Bio-inspired hairy crab claw polymer surface with excellent self-cleaning wettability in muddy or oil-contaminated water, ACS Appl. Biomater. 2(2018) 424-429. [14] A. Escobar, M. Pérez, Á. Sathicq, M. García, A. Paola, G. Romanelli, G. Blustein, Alkyl 2-furoates obtained by green chemistry procedures as suitable new antifoulants for marine protective coatings, J. Coat. Technol. Res. 16(2019) 159-166. [15] X. Meng, X. Jiang, P. Ji, A strong adhesive block polymer coating for antifouling of large molecular weight protein, Chinese J. Chem. Eng. 25(2017) 1831-1837. [16] X. Chen, G. Zhang, Q. Zhang, X. Zhan, F. Chen, Preparation and performance of amphiphilic polyurethane copolymers with capsaicin-mimic and PEG moieties for protein resistance and antibacteria, Ind. Eng. Chem. Res. 54(2015) 3813-3820. [17] X. Zhan, G. Zhang, Q. Zhang, F. Chen, Preparation, surface wetting properties, and protein adsorption resistance of well-defined amphiphilic fluorinated diblock copolymers, J. Appl. Polym. Sci. 131(2014) 41167-41178. [18] H. Wang, Y. Hu, D. Lynch, M. Young, S. Li, H. Cong, F.J. Xu, G. Cheng, Zwitterionic polyurethanes with tunable surface and bulk properties, ACS Appl. Mater. Interfaces 10(2018) 37609-37617. [19] F. Faÿ, I. Linossier, V. Langlois, K. Vallée-Rehel, Biodegrable poly(esteranhydride) for new antifouling coating, Biomacromolecules 8(2007) 1751-1758. [20] M. Qi, Q. Song, J. Zhao, C. Ma, G. Zhang, X. Gong, Three-dimensional bacterial behavior near dynamic surfaces formed by degradable polymers, Langmuir 33(2017) 13098-13104. [21] C.C. Chen, J.Y. Chueh, H. Tseng, H.M. Huang, S.Y. Lee, Preparation and characterization of biodegradable PLA polymeric blends, Biomaterials 24(2003) 1167-1173. [22] Q. Xie, J. Pan, C. Ma, G. Zhang, Dynamic surface antifouling:mechanism and systems, Soft Matter. 15(2019) 1087-1107. [23] N.R. Richbourg, N.A. Peppas, V.I. Sikavitsas, Tuning the biomimetic behavior of scaffolds for regenerative medicine through surface modifications, J. Tissue Eng. Regen. Med. 13(2019) 1275-1293. [24] J. Pan, Q. Xie, H. Chiang, Q. Peng, P.Y. Qian, C. Ma, G. Zhang, "from the Nature for the Nature":An eco-friendly antifouling coating consisting of poly(lactic acid)-based polyurethane and natural antifoulant, ACS Sustain. Chem. Eng. 8(2020) 1671-1678. [25] F. Fay, I. Linossier, E. Renard, K. Valle, Development of poly(e-caprolactone-coL-lactide) and poly(e-caprolactone-co-d-valerolactone) as new degradable binder used for antifouling paint, Eur. Polym. J. 43(2007) 4800-4813. [26] D. Carteau, K. Vallée-réhel, I. Linossier, R. Davy, C. Compère, M. Delbury, F. Fa, Development of environmentally friendly antifouling paints using biodegradable polymer and lower toxic substances, Prog. Org. Coat. 77(2014) 485-493. [27] M. Loriot, I. Linossier, K. Vallée-Réhel, F. Faÿ, Influence of biodegradable polymer properties on antifouling paints activity, Polymers (Basel) 9(2017) 36-51. [28] S. Chen, C. Ma, G. Zhang, Biodegradable polymers for marine antibiofouling:Poly(ε-caprolactone)/poly(butylene succinate) blend as controlled release system of organic antifoulant, Polym (United Kingdom) 90(2016) 215-221. [29] A. Ali, M.I. Jamil, J. Jiang, M. Shoaib, B.U. Amin, S. Luo, X. Zhan, F. Chen, Q. Zhang, An overview of controlled-biocide-release coating based on polymer resin for marine antifouling applications, J. Polym. Res. 27(2020) 1-17. [30] F. Fay, I. Linossier, E. Renard, Degradation and controlled release behavior of Ecaprolactone copolymers in biodegradable antifouling coatings, Biomacromolecules 7(2006) 851-857. [31] C. Yi, J. JieYi, R. Ren, Huang, Synthesis and characterization of degradable polyurethane based on poly (ether ester) polyols (PPG-2000 and ecaprolactone/lactic acid) for marine antifouling, J. Coat. Technol. Res. 12(2015) 525-532. [32] P. Król, Ł. Uram, B. Król, K. Pielichowska, M. Walczak, Study of chemical, physico-mechanical and biological properties of 4,4'-methylenebis(cyclohexyl isocyanate)-based polyurethane films, Mater. Sci. Eng. C 93(2018) 483-494. [33] C. Ma, L. Xu, W. Xu, G. Zhang, Degradable polyurethane for marine antibiofouling, J. Mater. Chem. B 1(2013) 3099-3106. [34] J. Fernández, A. Etxeberria, J. Sarasua, In vitro degradation studies and mechanical behavior of poly (e-caprolactone-co-d-valerolactone) and poly(ecaprolactone-co-L-lactide) with random and semi-alternating chain microstructures, Eur. Polym. J. 71(2015) 585-595. [35] J. Ma, C. Ma, Y. Yang, W. Xu, G. Zhang, Biodegradable polyurethane carrying antifoulants for inhibition of marine biofouling, Ind. Eng. Chem. Res. 53(2014) 12753-12759. [36] F. Faÿ, I. Linossier, J.J. Peron, V. Langlois, K. Vallée-Rehel, Antifouling activity of marine paints:Study of erosion, Prog. Org. Coat. 60(2007) 194-206. [37] J. Yao, S. Chen, C. Ma, G. Zhang, Marine anti-biofouling system with poly(ecaprolactone)/clay composite as carrier of organic antifoulant, J. Mater. Chem. B 2(2014) 5100-5106. |