[1] A. Jawed, V. Saxena, L.M. Pandey, Engineered nanomaterials and their surface functionalization for the removal of heavy metals:a review, J. Water Process Eng. 33(2020) 101009. [2] Y. Jiang, Y. Shang, T. Gong, Z. Hu, K. Yang, S. Shao, High concentration of Mn2+ has multiple influences on aerobic granular sludge for aniline wastewater treatment, Chemosphere 240(2020) 124945. [3] F.D. Owa, Water pollution:sources, effects, control and management, Mediterr. J. Soc. Sci. 4(8) (2013) 65-68. [4] M. Selvaraj, A. Hai, F. Banat, M. Abu Haija, Application and prospects of carbon nanostructured materials in water treatment:a review, J. Water Process Eng. 33(2020) 100996. [5] S. Tang, Y. Qiu, Selective separation and recovery of heavy metals from electroplating effluent using shear-induced dissociation coupling with ultrafiltration, Chemosphere 236(2019) 124330. [6] S. Liu, G. Cheng, Y. Xiong, Y. Ding, X. Luo, Adsorption of low concentrations of bromide ions from water by cellulosebased beads modified with TEMPO-mediated oxidation and Fe(III) complexation, J. Hazard. Mater. 384(2020) 121195. [7] Y. Jiang, Y. Liu, H. Zhang, K. Yang, J. Li, S. Shao, Aerobic granular sludge shows enhanced resistances to the long-term toxicity of Cu(II), Chemosphere 253(2020) 126664. [8] M. Costa, Potential hazards of hexavalent chromate in our drinking water, Toxicol. Appl. Pharmacol. 188(2003) 1-5. [9] G. Tiravanti, D. Petruzzelli, R. Passino, Pretreatment of tannery wastewaters by an ion exchange process for Cr (III) removal and recovery, Water Sci. Technol. 36(2-3) (1997) 197-207. [10] Z. Song, C.J. Williams, R.G.J. Edyvean, Sedimentation of tannery wastewater, Water Res. 34(7) (2000) 2171-2176. [11] M.M. Bello, A.A. Abdul Raman, A. Asghar, Activated carbon as carrier in fluidized bed reactor for Fenton oxidation of recalcitrant dye:oxidation-adsorption synergy and surface interaction, J. Water Process Eng. 33(2020) 101001. [12] A.G. Vlyssides, C.J. Israilides, Detoxification of tannery waste liquors with an electrolysis system, Environ. Pollut. 97(1-2) (1997) 147-152. [13] A. Filibeli, N. Buyukkamaci, H. Senol, Solidification of tannery wastes, Resour. Conserv. Recycl. 29(4) (2000) 251-261. [14] M. Li, X. Gao, C. Li, C. Yang, C. Fu, J. Liu, R. Wang, L. Chen, J. Lin, X. Liu, J. Lin, X. Pang, Isolation and identification of chromium reducing bacillus cereus species from chromiumcontaminated soil for the biological detoxification of chromium, Int. J. Env. Res. Pub. He. 17(2020) 2118. [15] Z. Song, C.J. Williams, R.G.J. Edyvean, Treatment of tannery wastewater by chemical coagulation, Desalination 164(3) (2004) 249-259. [16] C. Fabiani, F. Ruscio, M. Spadoni, M. Pizzichini, Chromium (III) salts recovery process from tannery wastewaters, Desalination 108(1-3) (1997) 183-191. [17] A.I. Hafez, M.S. El-Manharawy, M.A. Khedr, RO membrane removal of unreacted chromium from spent tanning effluent. A pilot-scale study, part 2, Desalination 144(1-3) (2002) 237-242. [18] F.S. Teodoro, O.F.H. Adarme, L.F. Gil, L.V.A. Gurgel, Synthesis and application of a new carboxylated cellulose derivative. Part II:removal of Co2+, Cu2+ and Ni2+ from bicomponent spiked aqueous solution, J. Colloid Interface Sci. 487(2017) 266-280. [19] Y. Ma, J. Zeng, Y. Zeng, H. Zhou, G. Liu, Y. Liu, L. Zeng, J. Jian, Z. Yuan, Preparation and performance of poly(4-vinylpyridine)-b-polysulfone-b-poly (4-vinylpyridine) triblock copolymer/polysulfone blend membrane for separation of palladium (II) from electroplating wastewaters, J. Hazard. Mater. 384(2020) 121277. [20] A. El Nemr, Potential of pomegranate husk carbon for Cr(VI) removal from wastewater:kinetic and isotherm studies, J. Hazard. Mater. 161(2009) 132-141. [21] A. El Nemr, A. El Sikaily, A. Khaled, O. Abdelwahab, Removal of toxic chromium (VI) from aqueous solution by activated carbon using Casuarina Equisetifolia, Chem. Ecol. 23(2) (2007) 119-129. [22] A. Eleryan, A. El Nemr, M. Mashaly, A. Khaled, 6-Triethylenetetramine 6-deoxycellulose grafted with crotonaldehyde as adsorbent for Cr(VI) removal from wastewater, Int. J. Sci. Eng. Res. 10(7) (2019) 1199-1211. [23] A. El Nemr, M.M. El Sadaawy, A. Khaled, A. El Sikaily, Adsorption of the anionic dye Direct Red 23 onto new activated carbons developed from Cynara cardunculus:kinetics, equilibrium and thermodynamics, Blue Biotechnol. J. 3(1) (2014) 121-142. [24] A. El Nemr, A. Khaled, O. Abdelwahab, A. El-Sikaily, Treatment of wastewater containing toxic chromium using new activated carbon developed from date palm seed, J. Hazard. Mater. 152(1) (2008) 263-275. [25] A. El Nemr, Pomegranate husk as an adsorbent in the removal of toxic chromium from wastewater, Chem. Ecol. 23(5) (2007) 409-425. [26] A. El Sikaily, A. El Nemr, A. Khaled, O. Abdelwahab, Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon, J. Hazard. Mater. 148(2007) 216-228. [27] A. El Nemr, A. El Sikaily, A. Khaled, O. Abdelwahab, Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon, Arab. J. Chem. 8(2015) 105-117. [28] O. Abdelwahab, A. El Sikaily, A.z Khaled, A. El Nemr, Mass transfer processes of chromium (VI) adsorption onto guava seeds, Chem. Ecol. 23(1) (2007) 73-85. [29] A. El Nemr (Ed.), Non-Conventional Textile Waste Water Treatment, Nova Science Publishers, Inc, Hauppauge New York 2012, p. 267. [30] G. Yin, Z. Liu, Q. Liu, W. Wu, The role of different properties of activated carbon in CO2 adsorption, Chem. Eng. J. 230(2013) 133-140. [31] Y.Li,B.Chen,L.Zhu, Single -solute and bi-solute sorption of phenantheren and pyrene onto pine needle cuticular fractions, Environ. Pollut. 158(7) (2010) 2478-2484. [32] S. Kumar, V.A. Loganathan, R.B. Gupta, M.O. Barnett, An assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization, J. Environ. Manag. 92(2011) 2504-2512. [33] Y. Yao, B. Gao, M. Inyang, A.R. Zimmerman, X. Cao, P. Pullammanappallil, L. Yang, Biochar derived from anaerobically digested sugar beet tailings:characterization and phosphate removal potential, Bioresour. Technol. 102(2011) 6273-6278. [34] H. Lu, W. Zhang, Y. Yang, X. Huang, S. Wang, R. Qiu, Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar, Water Res. 46(2012) 854-862. [35] T.W. Chen, L. Luo, S.H. Deng, G.Z. Shi, S.R. Zhang, Y.Z. Zhang, O.P. Deng, L.L. Wang, J. Zhang, L.Y. Wei, Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure, Bioresour. Technol. 267(2018) 431-437. [36] J. Liang, X.M. Li, Z.G. Yu, G.M. Zeng, Y. Luo, L.B. Jiang, Z.X. Yang, Amorphous MnO2 modified biochar derived from aerobically composted swine manure for adsorption of Pb(II) and Cd (II), ACS Sustain. Chem. Eng. 5(2017) 5049-5058. [37] W.J. Liu, F.X. Zeng, H. Jiang, X.S. Zhang, Preparation of high adsorption capacity biochars from waste biomass, Bioresour. Technol. 102(2011) 8247-8252. [38] L. Wang, Y. Wang, F. Ma, V. Tankpa, S. Bai, X. Guo, Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater:a review, Wang Sci. Total Environ. 668(2019) 1298-1309. [39] Y. Yao, B. Gao, J. Fang, M. Zhang, H. Chen, Y. Zhou, A. Creamer, Y. Sun, L. Yang, Characterization and environmental applications of clay-biochar composites, Chem. Eng. J. 242(2014) 136-143. [40] H. Zhang, A.G. Hay, Magnetic biochar derived from biosolids via hydrothermal carbonization:enzyme immobilization, immobilized-enzyme kinetics, environmental toxicity, J. Hazard. Mater. 384(2020) 121272. [41] D. Zhang, Y. Li, S. Tong, X. Jiang, L. Wang, X. Sun, et al., Biochar supported sulfidemodified nanoscale zero-valent iron for the reduction of nitrobenzene, RSC Adv. 8(39) (2018) 22161-22168. [42] H. Zhang, X. Yue, F. Li, R. Xiao, Y. Zhang, D. Gu, Preparation of rice straw-derived biochar for efficient cadmium removal by modification of oxygen-containing functional groups, Sci. Total Environ. 631-632(2018) 795-802. [43] Z. Song, F. Lian, Z. Yu, L. Zhu, B. Xing, W. Qiu, Synthesis and characterization of a novel MnOx -loaded biochar and its adsorption properties for Cu2+ in aqueous solution, Chem. Eng. J. 242(242) (2014) 36-42. [44] D. Jimenez-Cordero, F. Heras, N. Alonso-Morales, M. Gilarranz, J. Rodriguez, Ozone as oxidation agent in cyclic activation of biochar, Fuel Process. Technol. 139(2015) 42-48. [45] Z. Chang, L. Tian, M. Wu, X. Dong, J. Peng, B. Pan, Molecular markers of benzene polycarboxylic acids in describing biochar physiochemical properties and sorption characteristics, Environ. Pollut. 237(2018) 541. [46] I. Liatsou, G. Michail, M. Demetriou, I. Pashalidis, Uranium binding by biochar fibers derived from luffa cylindrical after controlled surface oxidation, J. Radioanal. Nucl. Chem. 311(1) (2017) 871-875. [47] Y. Ma, W.J. Liu, N. Zhang, Y.S. Li, H. Jiang, G.P. Sheng, Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution, Bioresour. Technol. 169(5) (2014) 403-408. [48] J. Pan, J. Jiang, R. Xu, Removal of Cr(VI) from aqueous solutions by Na2SO3/FeSO4 combined with peanut straw biochar, Chemosphere 101(3) (2014) 71-76. [49] M.A. Hassaan, A. El Nemr, F.F. Madkour, Testing the advanced oxidation processes on the degradation of direct blue 86 dye in wastewater, Egypt. J. Aquat. Res. 43(2017) 11-19. [50] M.A. Hassaan, A. El Nemr, F.F. Madkour, Advanced oxidation processes of mordant violet 40 dye in freshwater and seawater, Egypt. J. Aquat. Res. 43(2017) 1-9. [51] S.J. Gregg, K.S.W. Sing, Adsorption Surface Area and Porosity, 2nd ed. Academic Press INC., London, 1982. [52] F. Rouquerol, J. Rouquerol, K.S.W. Sing, Adsorption by Powders and Porous Solids, Academic Press INC., London, 1999. [53] E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Amer. Chem. Soc. 73(1) (1951) 373-380. [54] I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Amer. Chem. Soc. 38(1916) 2221-2295. [55] M. Doğan, M. Alkan, Y. Onganer, Adsorption of methylene blue from aqueous solution onto perlite, Water Air Soil Pollut. 120(2000) 229-249. [56] D.G. Kinniburgh, General purpose adsorptionisotherms, Environ. Sci. Technol. 20(1986) 895-904. [57] E. Longhinotti, F. Pozza, L. Furlan, M.D.N.D. Sanchez, M. Klug, M.C.M. Laranjeira, V.T. Favere, Adsorption of anionic dyes on the biopolymer chitin, J. Braz. Chem. Soc. 9(1998) 435-440. [58] H.M.F. Freundlich, Über die adsorption inlösungen, Z. Phys. Chem. (Leipzig) 57A (1906) 385-470. [59] G.D. Halsey, Physical adsorption in nonuniform surfaces, J. Chem. Phys. 16(1948) 931-945. [60] M.J. Tempkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physiochim, URSS 12(1940) 217-222. [61] D. Kavitha, C. Namasivayam, Experimental and kinetic studies on methylene blue adsorption by coirpith carbon, Bioresour. Technol. 98(2007) 14-21. [62] C. Aharoni, M. Ungarish, Kinetics of activated chemisorption. Part 2. Theoretical models, J. Chem. Soc. Faraday Trans. 73(1977) 456-464. [63] C. Aharoni, D.L. Sparks, Kinetics of soil chemical reactions-a theoretical treatment, in:D.L. Sparks, D.L. Suarez (Eds.), Rate of Soil Chemical Processes, Soil Sci. Soc. America, Madison, WI 1991, pp. 1-18. [64] X.S. Wang, Y. Qin, Equilibrium sorption isotherms for of Cu2+ on rice bran, Process Biochem. 40(2005) 677-680. [65] C.I. Pearce, J.R. Lioyd, J.T. Guthrie, The removal of color from textile wastewater using whole bacterial cells:a review, Dyes Pigments 58(2003) 179-196. [66] G. Akkaya, A. Ozer, Adsorption of acid red 274(AR 274) on Dicranellavaria:determination of equilibrium and kinetic model parameters, Process Biochem. 40(11) (2005) 3559-3568. [67] S. Lagergren, Zurtheorie der sogenannten adsorption gelosterstoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar 24(1898) 1-39. [68] Y.S. Ho, G. McKay, D.A.J. Wase, C.F. Foster, Study of the sorption of divalent metal ions on to peat, Adsorpt. Sci. Technol. 18(2000) 639-650. [69] J. Zeldowitsch, Über den mechanismus derkatalytischen oxidation von CO and MnO2, Acta Physicochim. URSS 1(1934) 364-449. [70] S.H. Chien, W.R. Clayton, Application of Elovich equation to the kinetics of phosphate release and sorption on soils, Soil Sci. Soc. Amer. J. 44(1980) 265-268. [71] D.L. Sparks, Kinetics of Reaction in Pure and Mixed Systems, in Soil Physical Chemistry, CRC Press, Boca Raton, 1986. [72] W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, Journal Sanit. Engineering Division. Amer. Soc. Civil Eng. 89(1963) 31-60. [73] K. Srinivasan, N. Balasubramanian, T.V. Ramakrishan, Studies on chromium removal by rice husk carbon. Ind, J. Environ. Health 30(1988) 376-387. [74] J.C.Y. Ng, W.H. Cheung, G. McKay, Equilibrium studies of the sorption of Cu(II) ions onto chitosan, J. Coll. Interference Sci. 255(2002) 64-74. [75] J.F. Porter, G. McKay, K.H. Choy, The prediction of sorption from a binary mixture of acidic des using single- and mixed-isotherm variants of the ideal adsorbed solute theory, Chem. Eng. Sci. 54(1999) 5863-5885. [76] S.J. Allen, Q. Gan, R. Matthews, P.A. Johnson, Comparison of optimized isotherm models for basic dye adsorption by kudzu, Bioresour. Technol. 88(2003) 143-152. [77] Y.S. Ho, W.T. Chiu, C.C. Wang, Regression analysis for the sorption isotherms of basic dyes on sugarcane dust, Bioresour. Technol. 96(2005) 1285-1291. [78] L. Liu, W. Cui, C. Lu, A. Zain, W. Zhang, G. Shen, S. Hu, X. Qian, Analyzing the adsorptive behavior of amoxicillin on four Zr-MOFs nanoparticles:functional groups dependence of adsorption performance and mechanisms, J. Environ. Manag. 268(2020) 110630. [79] Y. Wang, C. Peng, E. Padilla-Ortega, A. Robledo-Cabrera, A. Lopez-Valdivieso, Cr(VI) adsorption on activated carbon:mechanisms, modeling and limitations in water treatment, J. Environ. Chem. Eng. 8(4) (2020) 104031. [80] M. Aoyama, M. Kishino, T.S. Jo, Biosorption of Cr (VI) on Japanese cedar bark, Sep. Sci. Technol. 39(5) (2005) 1149-1162. [81] A.C.G. Junior, L. Strey, C.A. Lindino, H. Nacke, D. Schwantes, E.P. Seidel, Applicability of the Pinus bark (Pinus elliottii) for the adsorption of toxic heavy metals from aqueous solutions, Acta Sci. Technol. 34(1) (2012) 79-87. [82] M.S. Kumar, B. Phanikumar, Response surface modelling of Cr6+ adsorption from aqueous solution by neem bark powder:box-behnken experimental approach, Environ. Sci. Pollut. Res. 20(3) (2013) 1327-1343. [83] V. Sarin, K.K. Pant, Removal of chromium from industrial waste by using eucalyptus bark, Bioresour. Technol. 97(1) (2006) 15-20. [84] M. Vasudevan, P.S. Ajithkumar, R.P. Singh, N. Natarajan, Mass transfer kinetics using two-site interface model for removal of Cr(VI) from aqueous solution with cassava peel and rubber tree bark as adsorbents, Environ. Eng. Res. 21(2) (2015) 152-163. [85] A.L. Arim, M.J. Quina, L.M. Gando-Ferreira, Uptake of trivalent chromium from aqueous solutions by xanthate pine bark:characterization, batch and column studies, Process. Saf. Environ. Prot. 121(2019) 374-386. [86] Z. Hu, L. Lei, Y. Li, Y. Ni, Chromium adsorption on high-performance activated carbons from aqueous solution, Sep. Purif. Technol. 31(2003) 13-18. |