[1] A. Lyngfelt, A. Brink, Ø. Langørgen, T. Mattisson, M. Rydén, C. Linderholm, 11, 000 h of chemical-looping combustion operation-Where are we and where do we want to go?, Int J. Greenh. Gas Control. 88(2019) 38-56. [2] J. Adánez, A. Abad, T. Mendiara, P. Gayán, L.F. de Diego, F. García-Labiano, Chemical looping combustion of solid fuels, Prog. Energy Combust. Sci. 65(2018) 6-66. [3] J.B. Hu, Y. Liu, J. Liu, C.K. Gu, Effects of water vapor and trace gas impurities in flue gas on CO2 capture in zeolitic imidazolate frameworks:The significant role of functional groups, Fuel 200(2017) 244-251. [4] J.B. Hu, J. Liu, Y. Liu, X. Yang, Improving carbon dioxide storage capacity of metal organic frameworks by lithium alkoxide functionalization:A molecular simulation study, J. Phys. Chem. C 120(19) (2016) 10311-10319. [5] J.B. Hu, Y. Liu, J. Liu, C.K. Gu, D.W. Wu, High CO2 adsorption capacities in UiO type MOFs comprising heterocyclic ligand, Microporous Mesoporous Mater. 256(2018) 25-31. [6] M. Ishida, D. Zheng, T. Akehata, Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis, Energy 12(2) (1987) 147-154. [7] M. Ishida, H.G. Jin, A novel chemical-looping combustor without NOx formation, Ind. Eng. Chem. Res. 35(7) (1996) 2469-2472. [8] S.W. Luo, L. Zeng, L.S. Fan, Chemical looping technology:oxygen carrier characteristics, Annu Rev Chem Biomol Eng 6(2015) 53-75. [9] P. Cho, T. Mattisson, A. Lyngfelt, Carbon formation on nickel and iron oxidecontaining oxygen carriers for chemical-looping combustion, Ind. Eng. Chem. Res. 44(4) (2005) 668-676. [10] E. Jerndal, T. Mattisson, A. Lyngfelt, Thermal analysis of chemical-looping combustion, Chem. Eng. Res. Des. 84(9) (2006) 795-806. [11] L.F. de Diego, F. García-Labiano, P. Gayán, A. Abad, A. Cabello, J. Adánez, G. Sprachmann, Performance of Cu- and Fe-based oxygen carriers in a 500 Wth CLC unit for sour gas combustion with high H2S content, Int. J. Greenh. Gas Control. 28(2014) 168-179. [12] A. Cabello, C. Dueso, F. García-Labiano, P. Gayán, A. Abad, L.F. de Diego, J. Adánez, Performance of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier with CH4 and H2S in a 500 Wth CLC unit, Fuel 121(2014) 117-125. [13] A. Abad, F. García-Labiano, L.F. de Diego, P. Gayán, J. Adánez, Reduction kinetics of Cu-, Ni-, and Fe-based oxygen carriers using syngas (CO + H2) for chemicallooping combustion, Energy Fuels 21(4) (2007) 1843-1853. [14] A. Abad, J. Adánez, F. García-Labiano, L.F. de Diego, P. Gayán, J. Celaya, Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion, Chem. Eng. Sci. 62(1-2) (2007) 533-549. [15] F. García-Labiano, J. Adánez, L.F. de Diego, P. Gayán, A. Abad, Effect of pressure on the behavior of copper-, iron-, and nickel-based oxygen carriers for chemical-looping combustion, Energy Fuels 20(1) (2006) 26-33. [16] A. Lyngfelt, Chemical-looping combustion of solid fuels-Status of development, Appl. Energy 113(2014) 1869-1873. [17] H. Leion, T. Mattisson, A. Lyngfelt, Solid fuels in chemical-looping combustion, Int. J. Greenh. Gas. Control 2(2008) 180-193. [18] T. Song, J.H. Wu, H.F. Zhang, L.H. Shen, Characterization of an Australia hematite oxygen carrier in chemical looping combustion with coal, Int. J. Greenh. Gas Control. 11(2012) 326-336. [19] H.J. Ge, L.H. Shen, H.C. Bai, S.W. Ma, S.Y. Yin, P. Lu, T. Song, Characteristics of Zhundong coal ash in hematite-based chemical looping combustion, Energy Fuels 34(7) (2020) 8150-8166. [20] A. Cabello, A. Abad, F. García-Labiano, P. Gayán, L.F. de Diego, J. Adánez, Kinetic determination of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier for use in gas-fueled Chemical Looping Combustion, Chem. Eng. J. 258(2014) 265-280. [21] E.R. Monazam, R.W. Breault, R. Siriwardane, G. Richards, S. Carpenter, Kinetics of the reduction of hematite (Fe2O3) by methane (CH4) during chemical looping combustion:a global mechanism, Chem. Eng. J. 232(2013) 478-487. [22] C.Q. Dong, S.H. Sheng, W. Qin, Q. Lu, Y. Zhao, X.Q. Wang, J.J. Zhang, Density functional theory study on activity of α-Fe2O3 in chemical-looping combustion system, Appl. Surf. Sci. 257(20) (2011) 8647-8652. [23] J.J. Tang, B. Liu, Reactivity of the Fe2O3(0001) surface for methane oxidation:A GGA+ U study, J. Phys. Chem. C (2016) 6642-6650. [24] L. Huang, M.C. Tang, M.H. Fan, H.S. Cheng, Density functional theory study on the reaction between hematite and methane during chemical looping process, Appl. Energy 159(2015) 132-144. [25] C.F. Lin, W. Qin, C.Q. Dong, Reduction effect of α-Fe2O3 on carbon deposition and CO oxidation during chemical-looping combustion, Chem. Eng. J. 301(2016) 257-265. [26] Z. Cheng, L. Qin, M.Q. Guo, J.A. Fan, D.K. Xu, L.S. Fan, Methane adsorption and dissociation on iron oxide oxygen carriers:The role of oxygen vacancies, Phys Chem Chem Phys 18(24) (2016) 16423-16435. [27] L. Qin, M.Q. Guo, Z. Cheng, M.Y. Xu, Y. Liu, D.K. Xu, J.A. Fan, L.S. Fan, Improved cyclic redox reactivity of lanthanum modified iron-based oxygen carriers in carbon monoxide chemical looping combustion, J. Mater. Chem. A 5(38) (2017) 20153-20160. [28] J.W. Bennett, X. Huang, Y. Fang, D.M. Cwiertny, V.H. Grassian, S.E. Mason, Methane dissociation on α-Fe2O3(0001) and Fe3O4(111) surfaces:Firstprinciples insights into chemical looping combustion, J. Phys. Chem. C 123(2019) 6450-6463. [29] F.X. Li, S.W. Luo, Z.C. Sun, X.G. Bao, L.S. Fan, Role of metal oxide support in redox reactions of iron oxide for chemical looping applications:experiments and density functional theory calculations, Energy Environ. Sci. 4(9) (2011) 3661. [30] Y.C. Liu, S. Nachimuthu, Y.C. Chuang, Y. Ku, J.C. Jiang, Reduction mechanism of iron titanium based oxygen carriers with H2 for chemical looping applications-a combined experimental and theoretical study, RSC Adv. 6(108) (2016) 106340-106346. [31] S. Liu, D. Xiang, Y. Xu, Z. Sun, Y. Cao, Relationship between electronic properties of Fe3O4 substituted by Ca and Ba and their reactivity in chemical looping process:A first-principles study, Appl. Energy 202(2017) 550-557. [32] E. Bazhenova, K. Honkala, Screening the bulk properties and reducibility of Fedoped Mn2O3 from first principles calculations, Catal. Today 285(2017) 104-113. [33] F. Liu, J. Liu, Y.J. Yang, Z. Wang, C.G. Zheng, Reaction mechanism of spinel CuFe2O4 with CO during chemical-looping combustion:An experimental and theoretical study, Proc. Combust. Inst. 37(4) (2019) 4399-4408. [34] F. Liu, J. Liu, Y.J. Yang, X.F. Wang, A mechanistic study of CO oxidation over spinel MnFe2O4 surface during chemical-looping combustion, Fuel 230(2018) 410-417. [35] F. Liu, J.X. Dai, J. Liu, Y.J. Yang, R.X. Fang, Density functional theory study on the reaction mechanism of spinel CoFe2O4 with CO during chemical-looping combustion, J. Phys. Chem. C 123(28) (2019) 17335-17342. [36] Y.J. Yang, J. Liu, Z. Wang, J.Y. Ding, Y.N. Yu, Charge-distribution modulation of copper ferrite spinel-type catalysts for highly efficient Hg0 oxidation, J Hazard Mater 402(2021) 123576. [37] Z. Wang, J. Liu, Y.J. Yang, F. Liu, J.Y. Ding, Heterogeneous reaction mechanism of elemental mercury oxidation by oxygen species over MnO2 catalyst, Proc. Combust. Inst. 37(3) (2019) 2967-2975. [38] Y.J. Yang, J. Liu, Z. Wang, Y.N. Yu, Reaction mechanism of elemental mercury oxidation to HgSO4 during SO2/SO3 conversion over V2O5/TiO2 catalyst, Proc. Combust. Inst. 38(3) (2021) 4317-4325. [39] Y.J. Yang, J. Liu, Z. Wang, Reaction mechanisms and chemical kinetics of mercury transformation during coal combustion, Prog. Energy Combust. Sci. 79(2020) 100844. [40] X.G. Wang, W. Weiss, S. Shaikhutdinov, M. Ritter, M. Petersen, F. Wagner, R. Schlögl, M. Scheffler, The hematite (α-Fe2O3) (0001) surface:evidence for domains of distinct chemistry, Phys. Rev. Lett. 81(5) (1998) 1038. [41] S. Yamamoto, T. Kendelewicz, J.T. Newberg, G. Ketteler, D.E. Starr, E.R. Mysak, K.J. Andersson, H. Ogasawara, H. Bluhm, M. Salmeron, G.E. Brown Jr, A. Nilsson, Water adsorption on α-Fe2O3(0001) at near ambient conditions, J. Phys. Chem. C 114(5) (2010) 2256-2266. [42] J.J. Song, X.Q. Niu, L.X. Ling, B.J. Wang, A density functional theory study on the interaction mechanism between H2S and the α-Fe2O3(0001) surface, Fuel Process. Technol. 115(2013) 26-33. [43] X.Y. Ma, L. Liu, J.J. Jin, P.C. Stair, D.E. Ellis, Experimental and theoretical studies of adsorption of CH3 on α-Fe2O3(0001) surfaces, Surf. Sci. 600(14) (2006) 2874-2885. [44] W. Bergermayer, H. Schweiger, E. Wimmer, Ab initio thermodynamics of oxide surfaces:O2 on Fe2O3(0001), Phys. Rev. B 69(2004) 195409. [45] F. Alvarez-Ramírez, J.M. Martínez-Magadán, J.R.B. Gomes, F. Illas, On the geometric structure of the (0001) hematite surface, Surf. Sci. 558(1-3) (2004) 4-14. [46] M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation:ideas, illustrations and the CASTEP code, J. Phys.:Condens. Matter 14(11) (2002) 2717-2744. [47] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys Rev Lett 77(18) (1996) 3865-3868. [48] J.A. White, D.M. Bird, Implementation of gradient-corrected exchangecorrelation potentials in Car-Parrinello total-energy calculations, Phys. Rev. B Condens. Matter 50(7) (1994) 4954-4957. [49] Y.J. Yang, J. Liu, F. Liu, Z. Wang, J.Y. Ding, Comprehensive Hg/Br reaction chemistry over Fe2O3 surface during coal combustion, Combust. Flame 196(2018) 210-222. [50] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B Condens. Matter 41(11) (1990) 7892-7895. [51] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(1976) 5188. [52] T.A. Halgren, W.N. Lipscomb, The synchronous-transit method for determining reaction pathways and locating molecular transition states, Chem. Phys. Lett. 49(2) (1977) 225-232. [53] L.W. Finger, R.M. Hazen, Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars, J. Appl. Phys. 51(10) (1980) 5362. [54] K. Jug, D.N. Nanda, SINDO1 II. Application to ground states of molecules containing carbon, nitrogen and oxygen atoms, Theor. Chim. Acta 57(2) (1980) 107-130. [55] W.C. Mackrodt, R.J. Davey, S.N. Black, R. Docherty, The morphology of a-Al2O3 and α-Fe2O3:The importance of surface relaxation, J. Cryst. Growth 80(2) (1987) 441-446. [56] P. Ferrin, S. Kandoi, A.U. Nilekar, M. Mavrikakis, Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces:A DFT study, Surf. Sci. 606(7-8) (2012) 679-689. [57] A. Trinchero, A. Hellman, H. Grönbeck, Methane oxidation over Pd and Pt studied by DFT and kinetic modeling, Surf. Sci. 616(2013) 206-213. |