[1] C.Y. Zeng, Q.L. Hu, 2018 petroleum & chemical industry development report, Chin. J. Chem. Eng. 27 (2019) 2606-2614 [2] L.B. Li, R.B. Lin, R. Krishna, H. Li, S.C. Xiang, H. Wu, J.P Li, W. Zhou, B.L Chen, Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites, Science 362 (6413) (2018) 443-446 [3] Y.X Wang, S.B. Peh, D. Zhao, Alternatives tocryogenicdistillation:Advancedporous materials in adsorptive light olefin/paraffin separations, Small 15 (25) (2019) e1900058 [4] D.S.Sholl, R.P. Lively, Seven chemical separations to change the world, Nature 532 (7600) (2016) 435-437 [5] R.W. Triebe, F.H. Tezel, K.C. Khulbe, Adsorption of methane, ethane and ethylene on molecular sieve zeolites, Gas Sep. Purif. 10 (1) (1996) 81-84 [6] S. Aguado, G. Bergeret, C. Daniel, D. Farrusseng, Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A, J. Am. Chem. Soc. 134(36) (2012) 14635-14637 [7] P.J. Bereciartua, Á. Cantín, A. Corma, J.L. Jordá, M. Palomino, F. Rey, S. Valencia, E.W. Corcoran Jr, P. Kortunov, P.I. Ravikovitch, A. Burton, C. Yoon, Y. Wang, C. Paur, J. Guzman, A.R. Bishop, G.L. Casty, Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene, Science 358 (6366) (2017) 1068-1071 [8] C. Gücüyener, J. van den Bergh, J. Gascon, F. Kapteijn, Ethane/ethene separation turned on its head:Selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism, J. Am. Chem. Soc. 132 (50) (2010) 17704-17706 [9] Z.B. Bao, J.W. Wang, Z.G. Zhang, H.B. Xing, Q.W. Yang, Y.W. Yang, H. Wu, R. Krishna, W. Zhou, B.L. Chen, Q.L. Ren, Molecular sieving of ethane from ethylene through the molecular cross-section size differentiation in gallate-based metal-organic frameworks, Angew. Chem. Int. Ed. 57 (49) (2018) 16020-16025 [10] R.B. Lin, L.B. Li, H.L. Zhou, H. Wu, C.H. He, S. Li, R. Krishna, J.P. Li, W. Zhou, B.L. Chen, Molecular sieving of ethylene from ethane using a rigid metal-organic framework, Nat. Mater. 17 (12) (2018) 1128-1133 [11] S. Kitagawa, R. Kitaura, S. Noro, Functional porous coordination polymers, Angew. Chem. Int. Ed. 43 (18) (2004) 2334-2375 [12] R.E. Morris, L. Brammer, Coordination change, lability and hemilability in metal-organic frameworks, Chem. Soc. Rev. 46 (17) (2017) 5444-5462 [13] K. Adil, Y. Belmabkhout, R.S. Pillai, A. Cadiau, P.M. Bhatt, A.H. Assen, G. Maurin, M. Eddaoudi, Gas/vapour separation using ultra-microporous metal-organic frameworks:Insights into the structure/separation relationship, Chem. Soc. Rev. 46 (11) (2017) 3402-3430 [14] G. Mínguez Espallargas, E. Coronado, Magnetic functionalities in MOFs:From the framework to the pore, Chem. Soc. Rev.47 (2) (2018) 533-557 [15] Z. Ji, H.Z. Wang, S. Canossa, S. Wuttke, O.M. Yaghi, Pore chemistry of metal-organic frameworks, Adv. Funct. Mater. 30 (41) (2020) 2000238 [16] H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science 341 (6149) (2013) 1230444 [17] Y.B. He, W. Zhou, G.D. Qian, B.L. Chen, Methane storage in metal-organic frameworks, Chem. Soc. Rev. 43 (16) (2014) 5657-5678 [18] B. Li, H.M. Wen, W. Zhou, B.L. Chen, Porous metal-organic frameworks for gas storage and separation:What, how, and why?, J.Phys. Chem. Lett. 5 (20) (2014) 3468-3479 [19] M.K. Taylor, T. Runčevski, J. Oktawiec, M.I. Gonzalez, R.L. Siegelman, J.A. Mason, J.X. Ye, C.M. Brown, J.R. Long, Tuning the adsorption-induced phase change in the flexible metal-organic framework Co(bdp), J. Am. Chem. Soc. 138 (45) (2016) 15019-15026 [20] B. Li, H.M. Wen, W. Zhou, J.Q. Xu, B.L. Chen, Porous metal-organic frameworks:Promising materials for methane storage, Chem 1 (4) (2016) 557-580 [21] M.T. Zhao, K. Yuan, Y. Wang, G.D. Li, J. Guo, L. Gu, W.P. Hu, H.J. Zhao, Z.Y. Tang, Metal-organic frameworks as selectivity regulators for hydrogenation reactions, Nature 539 (7627) (2016) 76-80 [22] Y.T. Xu, X.F. Xiao, Z.M. Ye, S.L. Zhao, R. Shen, C.T. He, J.P. Zhang, Y.D. Li, X.M. Chen, Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution, J. Am. Chem. Soc. 139 (15) (2017) 5285-5288 [23] D.X. Yang, Y.F. Chen, Z. Su, X.J. Zhang, W.L. Zhang, K. Srinivas, Organic carboxylate-based MOFs and derivatives for electrocatalytic water oxidation, Coord. Chem. Rev. 428 (2021) 213619 [24] B. Yan, Lanthanide-functionalized metal-organic framework hybrid systems to create multiple luminescent centers for chemical sensing, Acc. Chem. Res. 50 (11) (2017) 2789-2798 [25] I. Stassen, N. Burtch, A. Talin, P. Falcaro, M. Allendorf, R. Ameloot, An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors, Chem. Soc. Rev. 46 (11) (2017) 3185-3241 [26] H. Wang, W.P. Lustig, J. Li, Sensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks, Chem. Soc. Rev. 47 (13) (2018) 4729-4756 [27] P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J.F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.S. Chang, Y.K. Hwang, V. Marsaud, P.N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, R. Gref, Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging, Nat. Mater. 9 (2) (2010) 172-178 [28] P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Férey, R.E. Morris, C. Serre, Metal-organic frameworks in biomedicine, Chem. Rev. 112 (2) (2012) 1232-1268 [29] E.K. Arabbaghi, J. Mokhtari, M.R. Naimi-Jamal, A. Khosravi, Zn-MOF:An efficient drug delivery platform for the encapsulation and releasing of Imatinib Mesylate, J. Porous Mater.28 (2) (2021) 641-649 [30] N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs):Routes to various MOF topologies, morphologies, and composites, Chem. Rev. 112 (2) (2012) 933-969 [31] S.M. Iveson, J.D. Litster, K. Hapgood, B.J. Ennis, Nucleation, growth and breakage phenomena in agitated wet granulation processes:A review, Powder Technol. 117 (1-2) (2001) 3-39 [32] A.U. Czaja, N. Trukhan, U. Müller, Industrial applications of metal-organic frameworks, Chem. Soc. Rev. 38 (5) (2009) 1284 [33] F. Akhtar, L. Andersson, S. Ogunwumi, N. Hedin, L. Bergström, Structuring adsorbents and catalysts by processing of porous powders, J. Eur. Ceram. Soc. 34 (7) (2014) 1643-1666 [34] G.P. Li, K. Zhang, C.B. Li, R.C. Gao, Y.L. Cheng, L. Hou, Y.Y. Wang, Solvent-free method to encapsulate polyoxometalate into metal-organic frameworks as efficient and recyclable photocatalyst for harmful sulfamethazine degrading in water, Appl. Catal. B:Environ. 245 (2019) 753-759 [35] X.J. Ma, Y.T. Chai, P. Li, B. Wang, Metal-organic framework films and their potential applications in environmental pollution control, Acc. Chem. Res. 52 (5) (2019) 1461-1470 [36] I. Majchrzak-Kucęba, A. Ściubidło, Shaping metal-organic framework (MOF) powder materials for CO2 capture applications-A thermogravimetric study, J. Therm. Anal. Calorim. 138 (6) (2019) 4139-4144 [37] Y.J. Tang, H.J. Zhu, L.Z. Dong, A. Zhang, S.L. Li, J. Liu, Y.Q. Lan, Solid-phase hot-pressing of POMs-ZIFs precursor and derived phosphide for overall water splitting, Appl. Catal. B:Environ. 245 (2019) 528-535 [38] J.W. Ren, N.M. Musyoka, H.W. Langmi, A. Swartbooi, B.C. North, M. Mathe, A more efficient way to shape metal-organic framework (MOF) powder materials for hydrogen storage applications, Int. J. Hydrog. Energy 40 (13) (2015) 4617-4622 [39] J.Y. Zheng, X.L. Cui, Q.W. Yang, Q.L. Ren, Y.W. Yang, H.B. Xing, Shaping of ultrahigh-loading MOF pellet with a strongly anti-tearing binder for gas separation and storage, Chem. Eng. J. 354 (2018) 1075-1082 [40] J. Cousin-Saint-Remi, S. van der Perre, T. Segato, M.P. Delplancke, S. Goderis, H. Terryn, G. Baron, J. Denayer, Highly robust MOF polymeric beads with a controllable size for molecular separations, ACS Appl. Mater. Interfaces 11 (14) (2019) 13694-13703 [41] P. Iacomi, U.H. Lee, A.H. Valekar, J.S. Chang, P.L. Llewellyn, Investigating the effect of alumina shaping on the sorption properties of promising metal-organic frameworks, RSC Adv. 9 (13) (2019) 7128-7135 [42] J. Kim, S.H. Kim, S.T. Yang, W.S. Ahn, Bench-scale preparation of Cu3(BTC)2 by ethanol reflux:Synthesis optimization and adsorption/catalytic applications, Microporous Mesoporous Mater. 161 (2012) 48-55 [43] A. Mallick, G. Mouchaham, P.M. Bhatt, W.B. Liang, Y. Belmabkhout, K. Adil, A. Jamal, M. Eddaoudi, Advances in shaping of metal-organic frameworks for CO2capture:Understanding the effect of rubbery and glassy polymeric binders, Ind. Eng. Chem. Res. 57 (49) (2018) 16897-16902 [44] M. Kriesten, J. Vargas Schmitz, J. Siegel, C.E. Smith, M. Kaspereit, M. Hartmann, Shaping of flexible metal-organic frameworks:Combining macroscopic stability and framework flexibility, Eur. J. Inorg. Chem. 2019 (43) (2019) 4700-4709 [45] B. Mortada, G. Chaplais, H. Nouali, C. Marichal, J. Patarin, Phase transformations of metal-organic frameworks MAF-6 and ZIF-71 during intrusion-extrusion experiments, J. Phys. Chem. C 123 (7) (2019) 4319-4328 [46] J.J. Richardson, B.L. Tardy, J.L. Guo, K. Liang, O.J. Rojas, H. Ejima, Continuous metal-organic framework biomineralization on cellulose nanocrystals:Extrusion of functional composite filaments, ACS Sustainable Chem. Eng. 7 (6) (2019) 6287-6294 [47] Y.F. Chen, X.Q. Huang, S.H. Zhang, S.Q. Li, S.J. Cao, X.K. Pei, J.W. Zhou, X. Feng, B. Wang, Shaping of metal-organic frameworks:From fluid to shaped bodies and robust foams, J. Am. Chem. Soc.138 (34) (2016) 10810-10813 [48] Q.F. Liu, Q. Zhang, B.R. Liu, J.J. Ma, A new synthesis and adsorption mechanism of ZrO2 based metal-organic frames for efficient removal of mercury ions from aqueous solution, Ceram. Int. 45 (12) (2019) 15720-15724 [49] J.J. Kong, F.X. Zhu, W. Huang, H. He, J.P. Hu, C. Sun, Q.M. Xian, S.G. Yang, Sol-gel based metal-organic framework zeolite imidazolate framework-8 fibers for solid-phase microextraction of nitro polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in water samples, J. Chromatogr. A 1603 (2019) 92-101 [50] K.Y. Lee, D.J. Mooney, Alginate:Properties and biomedical applications, Prog. Polym. Sci. 37 (1) (2012) 106-126 [51] H. Zhu, Q. Zhang, S.P. Zhu, Alginate hydrogel:Ashapeable and versatile platform for in situpreparation of metal-organic framework-polymer composites, ACS Appl. Mater. Interfaces 8 (27) (2016) 17395-17401 [52] J.Y. Sun, X.H. Zhao, W.R. Illeperuma, O. Chaudhuri, K.H. Oh, D.J. Mooney, J.J. Vlassak, Z.G. Suo, Highly stretchable and tough hydrogels, Nature 489 (7414) (2012) 133-136 [53] C.H. Yang, M.X. Wang, H. Haider, J.H. Yang, J.Y. Sun, Y.M. Chen, J.X. Zhou, Z.G. Suo, Strengthening alginate/polyacrylamide hydrogels using various multivalent cations, ACS Appl. Mater. Interfaces 5 (21) (2013) 10418-10422 [54] G.L. Du, F.X. Wu, Y. Cong, L. Nie, S.H. Liu, G.R. Gao, J. Fu, Versatile controlled ion release for synthesis of recoverable hybrid hydrogels with high stretchability and notch-insensitivity, Chem. Commun. 51 (85) (2015) 15534-15537 [55] J.Y. Leong, W.H. Lam, K.W. Ho, W.P. Voo, M.F.X. Lee, H.P. Lim, S.L. Lim, B.T. Tey, D. Poncelet, E.S. Chan, Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems, Particuology 24 (2016) 44-60 [56] A.I. Spjelkavik, Aarti, S. Divekar, T. Didriksen, R. Blom, Forming MOFs into spheres by use of molecular gastronomy methods, Chemistry 20 (29) (2014) 8973-8978 [57] D.W. Lee, T. Didriksen, U. Olsbye, R. Blom, C.A. Grande, Shaping of metal-organic framework UiO-66 using alginates:Effect of operation variables, Sep. Purif. Technol. 235 (2020) 116182 [58] K.Y. Wu, L.D. Guo, Z.G. Zhang, Q.W. Yang, Y.W. Yang, Q.L. Ren, Z.B. Bao, Shaping of gallate-based metal-organic frameworks for adsorption separation of ethylene from acetylene and ethane, J. Colloid Interface Sci. 581 (Pt A) (2021) 177-184 [59] P.X. Liu, C.H. He, L.B. Li, J.P. Li, Stable mixed metal-organic framework for efficient C2H6/C2H4 separation, CIESC Journal. 71 (2020) 4211-4218. (in Chinese) [60] J.J. Peng, Y.W. Sun, Y. Wu, Z. Lv, Z. Li, Selectively trapping ethane from ethylene on metal-organic framework MIL-53(Al)-FA, Ind. Eng. Chem. Res. 58 (19) (2019) 8290-8295 |