[1] D. Uztürk, U. Akman, Centralized and decentralized control of retrofit heat-exchanger networks, Comput. Chem. Eng. 21(1997) S373-S378 [2] M. Markowski, P. Trzcinski, On-line control of the heat exchanger network under fouling constraints, Energy 185(2019)521-526 [3] F. Lozano Santamaria, S. Macchietto, Online integration of optimal cleaning scheduling and control of heat exchanger networks under fouling, Ind. Eng. Chem. Res. 59(6)(2020)2471-2490 [4] M. Escobar, J.O. Trierweiler, I.E. Grossmann, Simultaneous synthesis of heat exchanger networks with operability considerations:Flexibility and controllability, Comput. Chem. Eng. 55(2013)158-180 [5] Z.H. Yuan, B.Z. Chen, G. Sin, R. Gani, State-of-the-art and progress in the optimization-based simultaneous design and control for chemical processes, AIChE J. 58(6)(2012)1640-1659 [6] K. Sánchez-Sánchez, L. Ricardez-Sandoval, Simultaneous process synthesis and control design under uncertainty:A worst-case performance approach, AIChE J. 59(7)(2013)2497-2514 [7] P. Vega, R. Lamanna de Rocco, S. Revollar, M. Francisco, Integrated design and control of chemical processes-Part I:Revision and classification, Comput. Chem. Eng. 71(2014)602-617 [8] Z. Yuan, W. Ping, C. Yang, M.R. Eden, Systematic control structure evaluation of two-stage-riser catalytic pyrolysis processes, Chem. Eng. Sci. 126(2015)309-328 [9] R.W. Koller, L.A. Ricardez-Sandoval, A dynamic optimization framework for integration of design, control and scheduling of multi-product chemical processes under disturbance and uncertainty, Comput. Chem. Eng. 106(2017)147-159 [10] I.K. Kookos, J.D. Perkins, Heuristic-based mathematical programming framework for control structure selection, Ind. Eng. Chem. Res. 40(9)(2001)2079-2088 [11] E. Bristol, On a new measure of interaction for multivariable process control, IEEE Trans. Autom. Control. 11(1)(1966)133-134 [12] S. Skogestad, I. Postelethwaite, MultivariableFeedbackControl Analysis and Design, Wiley, Chichester, U.K. 1996 [13] Multivariable control structure design of heat exchange networks based on mixed-integer quadratic programming [14] L. Sun, X.L. Zha, X.L. Luo, Coordination between bypass control and economic optimization for heat exchanger network, Energy 160(2018)318-329 [15] L.X. Kang, W.T. Tang, Y.Z. Liu, P. Daoutidis, Control configuration synthesis using agglomerative hierarchical clustering:A graph-theoretic approach, J. Process. Control. 46(2016)43-54 [16] W.L. Luyben, Simplified plantwide control structure for the diethyl oxalate process, Comput. Chem. Eng. 126(2019)451-464 [17] C.S. Patilas, I.K. Kookos, A quadratic approximation of the back-off methodology for the control structure selection problem, Comput. Chem. Eng. 143(2020)107114 [18] X.Y. Yin, J.F. Liu, Input-output pairing accounting for both structure and strength in coupling, AIChE J. 63(4)(2017)1226-1235 [19] L.L. Giovanini, J.L. Marchetti, Low-level flexible-structure control applied to heat exchanger networks, Comput. Chem. Eng. 27(8-9)(2003)1129-1142 [20] L.L. Giovanini, Flexible-structure control:A strategy for releasing input constraints, ISA Trans 43(3)(2004)361-376 [21] A.H. González, D. Odloak, J.L. Marchetti, Predictive control applied to heat-exchanger networks, Chem. Eng. Process.:Process. Intensif. 45(8)(2006)661-671 [22] V. Lersbamrungsuk, T. Srinophakun, S. Narasimhan, S. Skogestad, Control structure design for optimal operation of heat exchanger networks, Aiche J. 54(1)(2008)150-162 [23] P.A. Luppi, L. Braccia, P.G. Rullo, D.A.R. Zumoffen, Plantwide control design based on the control allocation approach, Ind. Eng. Chem. Res. 57(1)(2018)268-282 [24] A. Reyes-Lúa, S. Skogestad, Systematic design of active constraint switching using classical advanced control structures, Ind. Eng. Chem. Res. 59(6)(2020)2229-2241 [25] F.Y. Zheng, L.W. Liu, Z.M. Chen, Y.H. Chen, F.N. Cheng, Hybrid multi-objective control allocation strategy for compound high-speed rotorcraft, ISA Trans 98(2020)207-226 [26] T.F. Yee, I.E. Grossmann, Z. Kravanja, Simultaneous optimization models for heat integration-III. Process and heat exchanger network optimization, Comput. Chem. Eng. 14(11)(1990)1185-1200 [27] A.M. Hafizan, S.R. Wan Alwi, Z.A. Manan, J.J. Klemeš, Optimal heat exchanger network synthesis with operability and safety considerations, Clean Technol. Environ. Policy 18(8)(2016)2381-2400 [28] V. Kariwala, Y. Cao, Multiobjective control structure design:A branch and bound approach, Ind. Eng. Chem. Res. 51(17)(2012)6064-6070 [29] J.L. Li, J. Du, Z.C. Zhao, P.J. Yao, Efficient method for flexibility analysis of large-scale nonconvex heat exchanger networks, Ind. Eng. Chem. Res. 54(43)(2015)10757-10767 [30] S.W. Gu, L.L. Liu, L. Zhang, Y.Y. Bai, J. Du, Optimization-based framework for designing dynamic flexible heat exchanger networks, Ind. Eng. Chem. Res. 58(15)(2019)6026-6041 [31] S.W. Gu, L.L. Liu, L. Zhang, Y.Y. Bai, S.J. Wang, J. Du, Heat exchanger network synthesis integrated with flexibility and controllability, Chin. J. Chem. Eng. 27(7)(2019)1474-1484 |