[1] Y. Yuan, K.J. Huang, X. Qian, H.S. Chen, L.J. Zang, L. Zhang, Enhanced temperature difference control of distillation columns based on the averaged absolute variation magnitude, Chin. J. Chem. Eng. 29 (2021) 266-278. http://dx.doi.org/10.1016/j.cjche.2020.08.051 [2] S. Zhang, Y.F. Sun, Y.Q. Luo, H.Z. Hou, X.G. Yuan, Systematic exploration of the applicability of the idiomatic vapor balance rule to distillation column consolidation, Chin. J. Chem. Eng. 28 (8) (2020) 2121-2130. http://dx.doi.org/10.1016/j.cjche.2020.05.018 [3] E.W. Jacobsen, S. Skogestad, Dynamics and control of unstable distillation columns. Dynamics and Control of Chemical Reactors, Distillation Columns and Batch Processes. Amsterdam:Elsevier, 1993:201-206. https://doi.org/10.1016/b978-0-08-041711-0.50033-7 [4] Y. Fu, X.G. Liu, Nonlinear dynamic behaviors and control based on simulation of high-purity heat integrated air separation column, ISA Trans 55 (2015) 145-153. https://www.ncbi.nlm.nih.gov/pubmed/25511907/ [5] S. Skogestad, M. Morari, J.C. Doyle, Robust control of ill-conditioned plants:High-purity distillation, IEEE Trans. Autom. Control. 33 (12) (1988) 1092-1105. http://dx.doi.org/10.1109/9.14431 [6] Y. Zhu, X.G. Liu, Dynamics and control of high purity heat integrated distillation columns, Ind. Eng. Chem. Res. 44 (23) (2005) 8806-8814. http://dx.doi.org/10.1021/ie050141f [7] B.A. Ogunnaike, W.H. Ray, Process dynamics, modeling, and control (1994) https://www.researchgate.net/publication/306107211_Process_Dynamics_Modeling_and_Control. [8] J.Q. Han, From PID to active disturbance rejection control, IEEE Trans. Ind. Electron. 56 (3) (2009) 900-906. http://dx.doi.org/10.1109/TIE.2008.2011621 [9] Huang Y, Xue W, Active disturbance rejection control:Methodology and theoretical analysis, ISA Trans 53 (4) (2014) 963-976. https://www.ncbi.nlm.nih.gov/pubmed/24742958/ [10] W.C. Xue, Y. Huang, Tuning of sampled-data ADRC for nonlinear uncertain systems, J. Syst. Sci. Complex. 29 (5) (2016) 1187-1211. http://dx.doi.org/10.1007/s11424-016-4285-3 [11] Z.Q. Gao, Active disturbance rejection control:A paradigm shift in feedback control system design, In:Proceeding of the 2006 American Control Conference, Minneapolis, Minnesota, USA, 2006 [12] C.L. Cheng, C. Peng, T.F. Zhang, Fuzzy K-means cluster based generalized predictive control of ultra supercritical power plant, IEEE Trans. Ind. Informatics 17 (7) (2021) 4575-4583. http://dx.doi.org/10.1109/TII.2020.3020259 [13] Z.Q. Chen, H.P. Che, Z.Z. Yuan, A generalized predictive self-tuning controller with proportion and integration structure, Control. Decis. (1994) 9(2):105-110. (in Chinese) https://kns.cnki.net/KCMS/detail/detail.aspx?filename=KZYC402.004&dbname=CJFD&dbcode=CJFQ [14] Design and implementation of the PI-type active disturbance rejection generalized predictive control [15] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Softw. 69 (2014) 46-61 [16] S. Mohanty, B. Subudhi, P.K. Ray, A new MPPT design using grey wolf optimization technique for photovoltaic system under partial shading conditions, IEEE Trans. Sustain. Energy 7 (1) (2016) 181-188. http://dx.doi.org/10.1109/TSTE.2015.2482120 [17] N. Jayakumar, S. Subramanian, S. Ganesan, E.B. Elanchezhian, Grey wolf optimization for combined heat and power dispatch with cogeneration systems, Int. J. Electr. Power Energy Syst. 74 (2016) 252-264. http://dx.doi.org/10.1016/j.ijepes.2015.07.031 [18] V.K. Kamboj, S.K. Bath, J.S. Dhillon, Solution of non-convex economic load dispatch problem using Grey Wolf Optimizer, Neural Comput. Appl. 27 (5) (2016) 1301-1316. http://dx.doi.org/10.1007/s00521-015-1934-8 [19] Q.M. Alzubi, M. Anbar, Z.N.M. Alqattan, M.A. Al-Betar, R. Abdullah, Intrusion detection system based on a modified binary grey wolf optimisation, Neural Comput. Appl. 32 (10) (2020) 6125-6137. http://dx.doi.org/10.1007/s00521-019-04103-1 [20] S. Mirjalili, S.M. Mirjalili, A. Hatamlou, Multi-Verse Optimizer:A nature-inspired algorithm for global optimization, Neural Comput. Appl. 27 (2) (2016) 495-513. http://dx.doi.org/10.1007/s00521-015-1870-7 [21] S. Pothiraj, J.P. Kadambarajan, P. Kadarkarai, Floor planning of 3D IC design using hybrid multi-verse optimizer, Wirel. Pers. Commun. 118 (4) (2021) 3007-3023. http://dx.doi.org/10.1007/s11277-021-08166-z [22] S.E. Shukri, R. Al-Sayyed, A. Hudaib, S. Mirjalili, Enhanced multi-verse optimizer for task scheduling in cloud computing environments, Expert. Syst. Appl. 168 (2021) 114230. http://dx.doi.org/10.1016/j.eswa.2020.114230 [23] M. Ragab, O.A. Omer, M. Abdel-Nasser, Compressive sensing MRI reconstruction using empirical wavelet transform and grey wolf optimizer, Neural Comput. Appl. 32 (7) (2020) 2705-2724. http://dx.doi.org/10.1007/s00521-018-3812-7 [24] R. Salgotra, U. Singh, S. Sharma, On the improvement in grey wolf optimization, Neural Comput. Appl. 32 (8) (2020) 3709-3748. http://dx.doi.org/10.1007/s00521-019-04456-7 [25] M.H. Nadimi-Shahraki, S. Taghian, S. Mirjalili, An improved grey wolf optimizer for solving engineering problems, Expert. Syst. Appl. 166 (2021) 113917. http://dx.doi.org/10.1016/j.eswa.2020.113917 [26] X.Q. Meng, J.H. Jiang, H. Wang, AGWO:Advanced GWO in multi-layer perception optimization, Expert. Syst. Appl. 173 (2021) 114676. http://dx.doi.org/10.1016/j.eswa.2021.114676 [27] Devarapalli R, Bhattacharyya B, Sinha NK, Dey B, Amended GWO approach based multi-machine power system stability enhancement, ISA Trans 109 (2021) 152-174. https://www.ncbi.nlm.nih.gov/pubmed/33092864/ [28] Y.Y. Liu, J.H. Sun, H.Y. Yu, Y.Y. Wang, X.K. Zhou, An improved grey wolf optimizer based on differential evolution and OTSU algorithm, Appl. Sci. 10 (18) (2020) 6343. https://doi.org/10.3390/app10186343 [29] S. Gupta, K. Deep, Enhanced leadership-inspired grey wolf optimizer for global optimization problems, Eng. Comput. 36 (4) (2020) 1777-1800. http://dx.doi.org/10.1007/s00366-019-00795-0 [30] Y. Cheng, Z.Q. Chen, M.W. Sun, Q.L. Sun, Cascade active disturbance rejection control of a high-purity distillation column with measurement noise, Ind. Eng. Chem. Res. 57 (13) (2018) 4623-4631. https://doi.org/10.1021/acs.iecr.8b00231 [31] Y. Cheng, Z.Q. Chen, M.W. Sun, Q.L. Sun, Active disturbance rejection generalized predictive control for a high purity distillation column process with time delay, Can. J. Chem. Eng. 97 (11) (2019) 2941-2951. https://doi.org/10.1002/cjce.23513 [32] Y. Cheng, Z.Q. Chen, M.W. Sun, Q.L. Sun, Decoupling control of high-purity heat integrated distillation column process via active disturbance rejection control and nonlinear wave theory, Trans. Inst. Meas. Control. 42 (12) (2020) 2221-2233. https://doi.org/10.1177/0142331220908989 |