[1] Yano Hiroshi, Okamoto Tetsuhiko. Preparation of thiophenecarboxylic acid, JP Pat., 58029783(1983) [2] George C., Johnson, Woodbury, John W. Production of thiophenecarboxylic acid, US Pat.,2492645 (1949) [3] H.C. Guo, The environmental-friendly synthesis of 2-thiophenecarboxylic acid, Chem. Intermed. (2007) (12)13-14, 7, 20 [4] T. Sakakura, J.C. Choi, H. Yasuda, Transformation of carbon dioxide, Chem. Rev. 107 (6) (2007) 2365-2387. https://pubmed.ncbi.nlm.nih.gov/17564481/ [5] J.F. Luo, I. Larrosa, C-H carboxylation of aromatic compounds through CO2 fixation, ChemSusChem 10 (17) (2017) 3317-3332. https://pubmed.ncbi.nlm.nih.gov/28722818/ [6] J.T. Hong, M. Li, J.N. Zhang, B.Q. Sun, F.Y. Mo, C-H bond carboxylation with carbon dioxide, ChemSusChem 12 (1) (2019) 6-39. https://pubmed.ncbi.nlm.nih.gov/30381905/ [7] A.H. Liu, B. Yu, L.N. He, Catalytic conversion of carbon dioxide to carboxylic acid derivatives, Greenh. Gases Sci. Technol. 5 (1) (2015) 17-33. http://dx.doi.org/10.1002/ghg.1461 [8] G.A. Olah, B. Török, J.P. Joschek, I. Bucsi, P.M. Esteves, G. Rasul, G.K. Surya Prakash, Efficient chemoselective carboxylation of aromatics to arylcarboxylic acids with a superelectrophilically activated carbon dioxide-Al(2)Cl(6)/Al system, J. Am. Chem. Soc. 124 (38) (2002) 11379-11391. https://pubmed.ncbi.nlm.nih.gov/12236753/ [9] P. Munshi, E.J. Beckman, Effect of incubation of CO2 and lewis acid on the generation of toluic acid from toluene and CO2, Ind. Eng. Chem. Res. 48 (2) (2009) 1059-1062. https://doi.org/10.1021/ie801524e [10] P. Munshi, E.J. Beckman, S. Padmanabhan, Combined influence of fluorinated solvent and base in Friedel-Crafts reaction of toluene and CO2, Ind. Eng. Chem. Res. 49 (14) (2010) 6678-6682. https://doi.org/10.1021/ie100533c [11] K. Nemoto, H. Yoshida, N. Egusa, N. Morohashi, T. Hattori, Direct carboxylation of arenes and halobenzenes with CO2 by the combined use of AlBr3 and R3SiCl, J. Org. Chem. 75 (22) (2010) 7855-7862. https://pubmed.ncbi.nlm.nih.gov/21033692/ [12] K. Nemoto, S. Onozawa, N. Egusa, N. Morohashi, T. Hattori, Carboxylation of indoles and pyrroles with CO2 in the presence of dialkylaluminum halides, Tetrahedron Lett. 50 (31) (2009) 4512-4514. http://dx.doi.org/10.1016/j.tetlet.2009.05.076 [13] K. Nemoto, S. Onozawa, M. Konno, N. Morohashi, T. Hattori, Direct carboxylation of thiophenes and benzothiophenes with the aid of EtAlCl2, Bull. Chem. Soc. Jpn. 85 (3) (2012) 369-371. https://doi.org/10.1246/bcsj.20110335 [14] S. Tanaka, K. Watanabe, Y. Tanaka, T. Hattori, EtAlCl2/2, 6-disubstituted pyridine-mediated carboxylation of alkenes with carbon dioxide, Org. Lett. 18 (11) (2016) 2576-2579. https://pubmed.ncbi.nlm.nih.gov/27187716/ [15] X.B. Zhang, Z.M. Cheng, Performance of combined use of chlorosilanes and AlCl3 in the carboxylation of toluene with CO2, Aiche J. 63 (1) (2017) 185-191. http://dx.doi.org/10.1002/aic.15519 [16] I.I. Boogaerts, S.P. Nolan, Carboxylation of C-H bonds using N-heterocyclic carbene gold(I) complexes, J. Am. Chem. Soc. 132 (26) (2010) 8858-8859. https://pubmed.ncbi.nlm.nih.gov/20540522/ [17] I.I. Boogaerts, G.C. Fortman, M.R. Furst, C.S. Cazin, S.P. Nolan, Carboxylation of N-H/C-H bonds using N-heterocyclic carbene copper(I) complexes, Angewandte Chemie Int. Ed Engl. 49 (46) (2010) 8674-8677. https://pubmed.ncbi.nlm.nih.gov/20886489/ [18] W.J. Yoo, M.G. Capdevila, X. Du, S. Kobayashi, Base-mediated carboxylation of unprotected indole derivatives with carbon dioxide, Org. Lett. 14 (20) (2012) 5326-5329. https://pubmed.ncbi.nlm.nih.gov/23035967/ [19] S. Fenner, L. Ackermann, C-H carboxylation of heteroarenes with ambient CO2, Green Chem. 18 (13) (2016) 3804-3807. https://doi.org/10.1039/c6gc00200e [20] M. Shigeno, K. Hanasaka, K. Sasaki, K. Nozawa-Kumada, Y. Kondo, Direct carboxylation of electron-rich heteroarenes promoted by LiO-tBu with CsF and[18]crown-6, Chemistry 25 (13) (2019) 3235-3239. https://pubmed.ncbi.nlm.nih.gov/30637844/ [21] M. Shigeno, K. Sasaki, K. Nozawa-Kumada, Y. Kondo, Double-carboxylation of two C-H bonds in 2-alkylheteroarenes using LiO-t-bu/CsF, Org. Lett. 21 (12) (2019) 4515-4519. http://dx.doi.org/10.1021/acs.orglett.9b01386 [22] Shigeno M, Tohara I, Kumada-Nozawa K, Kondo Y. Direct C-2 carboxylation of 3-substituted indoles using a combined Brønsted base consisting of LiO-tBu/CsF/18-crown-6. European Journal of Organic chemistry, 2020, 2020(13) 1987-1991 [23] O. Vechorkin, N. Hirt, X.L. Hu, Carbon dioxide as the C1 source for direct C-H functionalization of aromatic heterocycles, Org. Lett. 12 (15) (2010) 3567-3569. https://pubmed.ncbi.nlm.nih.gov/20670021/ [24] A. Banerjee, G.R. Dick, T. Yoshino, M.W. Kanan, Carbon dioxide utilization via carbonate-promoted C-H carboxylation, Nature 531 (7593) (2016) 215-219. https://pubmed.ncbi.nlm.nih.gov/26961655/ [25] G.R. Dick, A.D. Frankhouser, A. Banerjee, M.W. Kanan, A scalable carboxylation route to furan-2, 5-dicarboxylic acid, Green Chem. 19 (13) (2017) 2966-2972. https://doi.org/10.1039/c7gc01059a [26] A.W. Lankenau, M.W. Kanan, Polyamide monomers via carbonate-promoted C-H carboxylation of furfurylamine, Chem. Sci. 11 (1) (2019) 248-252. https://pubmed.ncbi.nlm.nih.gov/34040718/ [27] K. Shen, Y. Fu, J.N. Li, L. Liu, Q.X. Guo, What are the pKa values of C-H bonds in aromatic heterocyclic compounds in DMSO? Tetrahedron 63 (7) (2007) 1568-1576. http://dx.doi.org/10.1016/j.tet.2006.12.032 [28] A.D. Frankhouser, M.W. Kanan, Phase behavior that enables solvent-free carbonate-promoted furoate carboxylation, J. Phys. Chem. Lett. 11 (18) (2020) 7544-7551. https://pubmed.ncbi.nlm.nih.gov/32812764/ [29] R.F. Gunst, R.H. Myers, D.C. Montgomery, Response surface methodology:Process and product optimization using designed experiments, Technometrics 38 (3) (1996) 285. https://doi.org/10.2307/1270613 [30] M.V. Gil, M. Martínez, S. García, F. Rubiera, J.J. Pis, C. Pevida, Response surface methodology as an efficient tool for optimizing carbon adsorbents for CO2 capture, Fuel Process. Technol. 106 (2013) 55-61. http://dx.doi.org/10.1016/j.fuproc.2012.06.018 [31] Yang J. H., Feng J. G., Sun C. C., Chen W., Ma Y. J., Chen Z. Y., Dong S., Deng W. Process optimization for the preparation of beta-cyhalothrin microspheres by using the response surface methodology. Journal of Polymers and the Environment, 2021, 29:3145-3153 [32] S. Polat, P. Sayan, Application of response surface methodology with a Box-Behnken design for struvite precipitation, Adv. Powder Technol. 30 (10) (2019) 2396-2407. http://dx.doi.org/10.1016/j.apt.2019.07.022 [33] S.S. Chen, Z. Zeng, N. Hu, B. Bai, H.L. Wang, Y.R. Suo, Simultaneous optimization of the ultrasound-assisted extraction for phenolic compounds content and antioxidant activity of Lycium ruthenicum Murr. fruit using response surface methodology, Food Chem. 242 (2018) 1-8. https://pubmed.ncbi.nlm.nih.gov/29037664/ [34] Y.G. Wang, C.Y. Guo, J. Shen, Y.Q. Sun, Y.X. Niu, P. Li, G. Liu, X.Y. Wei, A sustainable and green route to furan-2, 5-dicarboxylic acid by direct carboxylation of 2-furoic acid and CO2, J. CO2 Util. 48 (2021) 101524. http://dx.doi.org/10.1016/j.jcou.2021.101524 [35] Z.T. Alismaeel, A.H. Abbar, O.F. Saeed, Application of central composite design approach for optimisation of zinc removal from aqueous solution using a Flow-by fixed bed bioelectrochemical reactor, Sep. Purif. Technol. 287 (2022) 120510. http://dx.doi.org/10.1016/j.seppur.2022.120510 [36] E. Ahmadi, B. Shokri, A. Mesdaghinia, R. Nabizadeh, M. Reza Khani, S. Yousefzadeh, M. Salehi, K. Yaghmaeian, Synergistic effects of α-Fe2O3-TiO2 and Na2S2O8 on the performance of a non-thermal plasma reactor as a novel catalytic oxidation process for dimethyl phthalate degradation, Sep. Purif. Technol. 250 (2020) 117185. http://dx.doi.org/10.1016/j.seppur.2020.117185 [37] A. Özer, G. Gürbüz, A. Çalimli, B.K. Körbahti, Biosorption of copper(II) ions on Enteromorpha prolifera:Application of response surface methodology (RSM), Chem. Eng. J. 146 (3) (2009) 377-387. https://doi.org/10.1016/j.cej.2008.06.041 |