中国化学工程学报 ›› 2022, Vol. 50 ›› Issue (10): 43-55.DOI: 10.1016/j.cjche.2022.09.008
Jia Ren, Feng Xin, Yongsheng Xu
收稿日期:
2022-04-15
修回日期:
2022-09-02
出版日期:
2022-10-28
发布日期:
2023-01-04
通讯作者:
Feng Xin,E-mail:xinf@tju.edu.cn
Jia Ren, Feng Xin, Yongsheng Xu
Received:
2022-04-15
Revised:
2022-09-02
Online:
2022-10-28
Published:
2023-01-04
Contact:
Feng Xin,E-mail:xinf@tju.edu.cn
摘要: Polyoxymethylene dimethyl ethers are recognized as the prospective diesel additive to decrease the pollutant emission from the light-duty vehicles, which can be polymerize form the monomer of dimethoxymethane (DMM). The industrial synthesis of DMM is mainly involved two-step process: methanol is oxidized to form the formaldehyde in fixed bed reactor and then reacted with the generated formaldehyde through acetalization in continuous stirred-tank reactor. Due to huge energy consumption, this typical synthesis route of DMM needs to be upgraded and more green routes should be determined. In this review, four state-of-the-art one-step direct synthetic routes, including two upgrading routes (methanol direct oxidation and direct dehydrogenation) and two green routes (methanol diethyl ether direct oxidation and carbon oxides direct hydrogenation), have been summarized and compared. Combination with the reaction mechanism and catalytic performance on the different catalysts, the challenges and opportunities for every synthetic route are proposed. The relationships between catalyst structure and property in different synthesis strategy are also investigated and then the suggestions of the design of catalyst are given about future research directions that efforts should be made in. Hopefully, this review can bridge the gap between newly developed catalysts and synthesis technology to realize their commercial applications in the near future.
Jia Ren, Feng Xin, Yongsheng Xu. A review on direct synthesis of dimethoxymethane[J]. 中国化学工程学报, 2022, 50(10): 43-55.
Jia Ren, Feng Xin, Yongsheng Xu. A review on direct synthesis of dimethoxymethane[J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 43-55.
[1] H.Y. Liu, Z. Wang, J.X. Wang, X. He, Y.Y. Zheng, Q. Tang, J.F. Wang, Performance, combustion and emission characteristics of a diesel engine fueled with polyoxymethylene dimethyl ethers (PODE3-4)/diesel blends, Energy 88 (2015) 793-800 [2] A. Peter, G. Stebens, J.F. Baumgärtner, E. Jacob, F.K. Mantei, M. Ouda, I. Krossing, Facile two-phase catalysis:From dimethoxymethane and monomeric formaldehyde towards oxymethylene ethers (OMEs), ChemCatChem 12 (9) (2020) 2416-2420 [3] A. Peter, S.M. Fehr, V. Dybbert, D. Himmel, I. Lindner, E. Jacob, M. Ouda, A. Schaadt, R.J. White, H. Scherer, I. Krossing, Towards a sustainable synthesis of oxymethylene dimethyl ether by homogeneous catalysis and uptake of molecular formaldehyde, Angew. Chem. Int. Ed. 57 (30) (2018) 9461-9464 [4] N. Schmitz, F. Homberg, J. Berje, J. Burger, H. Hasse, Chemical equilibrium of the synthesis of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions, Ind. Eng. Chem. Res. 54 (25) (2015) 6409-6417 [5] Hagen, G. P.; Spangler, M. J., Preparation of polyoxymethylene dimethyl ethers by acid-activated catalytic conversion of methanol with formaldehyde formed by oxy-dehydrogenation of dimethyl ether. U.S Pat., US6265528 B1 (2001) [6] G.D. Zhang, H. Liu, X.X. Xia, W.G. Zhang, J.H. Fang, Effects of dimethyl carbonate fuel additive on diesel engine performances, Proc. Inst. Mech. Eng. D J. Automob. Eng. 219 (7) (2005) 897-903 [7] J. Burger, M. Siegert, E. Ströfer, H. Hasse, Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel:Properties, synthesis and purification concepts, Fuel 89 (11) (2010) 3315-3319 [8] M. Härtl, P. Seidenspinner, E. Jacob, G. Wachtmeister, Oxygenate screening on a heavy-duty diesel engine and emission characteristics of highly oxygenated oxymethylene ether fuel OME1, Fuel 153 (2015) 328-335 [9] A. Omari, B. Heuser, S. Pischinger, Potential of oxymethylenether-diesel blends for ultra-low emission engines, Fuel 209 (2017) 232-237 [10] S. Damiri, H.R. Pouretedal, O. Bakhshi, An extreme vertices mixture design approach to the optimization of methylal production process using p-toluenesulfonic acid as catalyst, Chem. Eng. Res. Des. 112 (2016) 155-162 [11] Wang, J.; Zheng, Y.; Wang, S.; Wang, T.; Chen, S.; Zhu, C., Method for Producing Polyoxymethylene Dimethyl Ethers. U.S. Pat., 9266990 B2 (2016) [12] J.O. Weidert, J. Burger, M. Renner, S. Blagov, H. Hasse, Development of an integrated reaction-distillation process for the production of methylal, Ind. Eng. Chem. Res. 56 (2) (2017) 575-582 [13] X.M. Zhang, S.F. Zhang, C.G. Jian, Synthesis of methylal by catalytic distillation, Chem. Eng. Res. Des. 89 (6) (2011) 573-580 [14] A. Grünert, P. Losch, C. Ochoa-Hernández, W. Schmidt, F. Schüth, Gas-phase synthesis of oxymethylene ethers over Si-rich zeolites, Green Chem. 20 (20) (2018) 4719-4728 [15] J.O. Drunsel, M. Renner, H. Hasse, Experimental study and model of reaction kinetics of heterogeneously catalyzed methylal synthesis, Chem. Eng. Res. Des. 90 (5) (2012) 696-703 [16] R. Peláez, P. Marín, S. Ordóñez, Synthesis of poly(oxymethylene) dimethyl ethers from methylal and trioxane over acidic ion exchange resins:A kinetic study, Chem. Eng. J. 396 (2020) 125305 [17] Lambiotte, G. New process for continuous production of methylal-by reaction of methanol and formaldehyde in presence of acid ion exchange resin, Swiss Pat., CH688041A5 (1997) [18] N. Schmitz, J. Burger, H. Hasse, Reaction kinetics of the formation of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions, Ind. Eng. Chem. Res. 54 (50) (2015) 12553-12560 [19] D. Oestreich, L. Lautenschütz, U. Arnold, J. Sauer, Reaction kinetics and equilibrium parameters for the production of oxymethylene dimethyl ethers (OME) from methanol and formaldehyde, Chem. Eng. Sci. 163 (2017) 92-104 [20] R.Y. Sun, I. Delidovich, R. Palkovits, Dimethoxymethane as a cleaner synthetic fuel:Synthetic methods, catalysts, and reaction mechanism, ACS Catal. 9 (2) (2019) 1298-1318 [21] K.A. Thavornprasert, M. Capron, L. Jalowiecki-Duhamel, F. Dumeignil, One-pot 1,1-dimethoxymethane synthesis from methanol:A promising pathway over bifunctional catalysts, Catal. Sci. Technol. 6 (4) (2016) 958-970 [22] K.A. Thavornprasert, M. Capron, L. Jalowiecki-Duhamel, O. Gardoll, M. Trentesaux, A.S. Mamede, G. Fang, J. Faye, N. Touati, H. Vezin, J.L. Dubois, J.L. Couturier, F. Dumeignil, Highly productive iron molybdate mixed oxides and their relevant catalytic properties for direct synthesis of 1, 1-dimethoxymethane from methanol, Appl. Catal. B Environ. 145 (2014) 126-135 [23] Y.Z. Yuan, Y. Iwasawa, Performance and characterization of supported rhenium oxide catalysts for selective oxidation of methanol to methylal, J. Phys. Chem. B 106 (17) (2002) 4441-4449 [24] H.Q. Guo, D.B. Li, D. Jiang, W.H. Li, Y.H. Sun, The one-step oxidation of methanol to dimethoxymethane over nanostructure vanadium-based catalysts, Catal. Lett. 135 (1-2) (2010) 48-56 [25] H.Q. Guo, C.B. Chen, Y. Xiao, J.G. Wang, Z.H. Fan, D.B. Li, Y.H. Sun, Influence of preparation method on the surface and catalytic properties of sulfated vanadia-titania catalysts for partial oxidation of methanol, Fuel Process. Technol. 106 (2013) 77-83 [26] G. Busca, A.S. Elmi, P. Forzatti, Mechanism of selective methanol oxidation over vanadium oxide-titanium oxide catalysts:a FT-IR and flow reactor study. J. Phys. Chem. C. 91(20) (1987) 5263-5269 [27] Y. Fu, J. Shen, Selective oxidation of methanol to dimethoxymethane under mild conditions over V2O5/TiO2 with enhanced surface acidity, Chem. Commun. 21 (2007) 2172-2174 [28] M.R. Jamei, M. Ranjbar, A. Eliassi, Sonochemical synthesis of vanadium complex nano-particles:A new precursor for preparation and evaluation of V2O5/Al2O3 nano-catalyst in selective oxidation of methanol to methylal, J. Iran. Chem. Soc. 14 (12) (2017) 2627-2635 [29] H.Q. Guo, D.B. Li, C.B. Chen, L.T. Jia, B. Hou, The one-step oxidation of methanol to dimethoxymethane over sulfated vanadia-titania catalysts:Influence of calcination temperature, RSC Adv. 5 (79) (2015) 64202-64207 [30] X.L. Lu, Z.F. Qin, M. Dong, H.Q. Zhu, G.F. Wang, Y.B. Zhao, W.B. Fan, J.G. Wang, Selective oxidation of methanol to dimethoxymethane over acid-modified V2O5/TiO2 catalysts, Fuel 90 (4) (2011) 1335-1339 [31] E.S. Zhan, Y. Li, J.L. Liu, X.M. Huang, W.J. Shen, A VOx/meso-TiO2 catalyst for methanol oxidation to dimethoxymethane, Catal. Commun. 10 (15) (2009) 2051-2055 [32] J.X. Cai, Y.C. Fu, Q. Sun, M.H. Jia, J.Y. Shen, Effect of acidic promoters on the titania-nanotubes supported V2O5 catalysts for the selective oxidation of methanol to dimethoxymethane, Chin. J. Catal. 34 (11) (2013) 2110-2117 [33] H.R. Ma, H.X. Wang, B. Lu, J.X. Zhao, Q.H. Cai, VOx molecular level grafted g-C3N4 for highly selective oxidation of methanol to dimethoxymethane, Mol. Catal. 469 (2019) 48-56 [34] J. Gornay, X. Sécordel, G. Tesquet, B. de Ménorval, S. Cristol, P. Fongarland, M. Capron, L. Duhamel, E. Payen, J.L. Dubois, F. Dumeignil, Direct conversion of methanol into 1, 1-dimethoxymethane:Remarkably high productivity over an FeMo catalyst placed under unusual conditions, Green Chem. 12 (10) (2010) 1722 [35] M. Yuan, R.Y. Tang, X.Y. Sun, Z.M. Zhang, Y.Y. Tian, Y.Y. Qiao, Effects of the support on bifunctional one-step synthesis of methylal via methanol oxidation catalysed by Fe-Mo-based bifunctional catalysts, Sustain. Energy Fuels 5 (1) (2021) 246-260 [36] Y.Z. Yuan, H.C. Liu, H. Imoto, T. Shido, Y. Iwasawa, Performance and characterization of a new crystalline SbRe2O6 catalyst for selective oxidation of methanol to methylal, J. Catal. 195 (1) (2000) 51-61 [37] Y.Z. Yuan, T. Shido, Y. Iwasawa, The new catalytic property of supported rhenium oxides for selective oxidation of methanol to methylal, Chem. Commun. (15) (2000) 1421-1422 [38] H.C. Liu, E. Iglesia, Selective oxidation of methanol and ethanol on supported ruthenium oxide clusters at low temperatures, J. Phys. Chem. B 109 (6) (2005) 2155-2163 [39] H.Y. Zhao, S. Bennici, J.Y. Shen, A. Auroux, Nature of surface sites of catalysts and reactivity in selective oxidation of methanol to dimethoxymethane, J. Catal. 272 (1) (2010) 176-189. [40] B.M. Weckhuysen, D.E. Keller, Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis, Catal. Today 78 (1-4) (2003) 25-46 [41] T. Wang, Y.L. Meng, L. Zeng, J.L. Gong, Selective oxidation of methanol to dimethoxymethane over V2O5/TiO2-Al2O3 catalysts, Sci. Bull. 60 (11) (2015) 1009-1018 [42] H. Zhao, S. Bennici, J. Shen, A. Auroux, The influence of the preparation method on the structural, acidic and redox properties of catalysts, Appl. Catal. A Gen. 356 (2) (2009) 121-128 [43] S.M. Rui, G.J. Liu, Q.Y. Wang, P. Wu, T.T. Qin, G.F. Zeng, X.Q. Chen, Z.Y. Liu, Y.H. Sun, Selective oxidation of methanol to dimethoxymethane at low temperatures through size-controlled VTiOx nanoparticles, ChemCatChem 9 (10) (2017) 1776-1781 [44] J.W. Liu, Q. Sun, Y.C. Fu, J.Y. Shen, Preparation and characterization of mesoporous VOx-TiO2 complex oxides for the selective oxidation of methanol to dimethoxymethane, J. Colloid Interface Sci. 335 (2) (2009) 216-221 [45] H. Zhao, S. Bennici, J. Shen, A. Auroux, Surface and catalytic properties of catalysts for the oxidation of methanol prepared by various methods, J. Mol. Catal. A Chem. 309 (1-2) (2009) 28-34 [46] H.Q. Guo, D.B. Li, D. Jiang, W.H. Li, Y.H. Sun, Characterization and performance of sulfated VOx-TiO2 catalysts in the one-step oxidation of methanol to dimethoxymethane, Catal. Commun. 11 (5) (2010) 396-400 [47] H. Zhao, S. Bennici, J. Shen, A. Auroux, Calorimetric study of the acidic character of catalysts used in methanol oxidation to dimethoxymethane, J. Therm. Anal. Calorim. 99 (3) (2010) 843-847 [48] H. Zhao, S. Bennici, J. Cai, J. Shen, A. Auroux, Effect of vanadia loading on the acidic, redox and catalytic properties of V2O5-TiO2 and catalysts for partial oxidation of methanol, Catal. Today 152 (1-4) (2010) 70-77 [49] H.Y. Zhao, S. Bennici, J.X. Cai, J.Y. Shen, A. Auroux, Influence of the metal oxide support on the surface and catalytic properties of sulfated vanadia catalysts for selective oxidation of methanol, J. Catal. 274 (2) (2010) 259-272 [50] H. Golinska-Mazwa, P. Decyk, M. Ziolek, Sb, V, Nb containing catalysts in low temperature oxidation of methanol-The effect of preparation method on activity and selectivity, J. Catal. 284 (1) (2011) 109-123 [51] H.Q. Guo, D.B. Li, C.B. Chen, Z.H. Fan, Y.H. Sun, One-step oxidation of methanol to dimethoxymethane on V2O5/CeO2 catalyst, Chin. J. CATALYSIS Chin. VERSION 33 (5) (2013) 813-818 [52] Y.B. Zhao, Z.F. Qin, G.F. Wang, M. Dong, L.C. Huang, Z.W. Wu, W.B. Fan, J.G. Wang, Catalytic performance of V2O5/ZrO2-Al2O3 for methanol oxidation, Fuel 104 (2013) 22-27 [53] Y.L. Meng, T. Wang, S. Chen, Y.J. Zhao, X.B. Ma, J.L. Gong, Selective oxidation of methanol to dimethoxymethane on V2O5-MoO3/γ-Al2O3 catalysts, Appl. Catal. B Environ. 160-161 (2014) 161-172 [54] T.V. Andrushkevich, V.V. Kaichev, Y.A. Chesalov, A.A. Saraev, V.I. Buktiyarov, Selective oxidation of ethanol over vanadia-based catalysts:The influence of support material and reaction mechanism, Catal. Today 279 (2017) 95-106 [55] M. Tao, H.X. Wang, B. Lu, J.X. Zhao, Q.H. Cai, Highly selective oxidation of methanol to dimethoxymethane over SO42-/V2O5-ZrO2, New J. Chem. 41 (16) (2017) 8370-8376 [56] V.V. Kaichev, G.Y. Popova, Y.A. Chesalov, A.A. Saraev, T.V. Andrushkevich, V.I. Bukhtiyarov, Active component of supported vanadium catalysts in the selective oxidation of methanol, Kinetics Catal. 57 (1) (2016) 82-94 [57] J.W. Liu, Y.C. Fu, Q. Sun, J.Y. Shen, TiO2 nanotubes supported V2O5 for the selective oxidation of methanol to dimethoxymethane, Microporous Mesoporous Mater. 116 (1-3) (2008) 614-621 [58] S. Chen, S.P. Wang, X.B. Ma, J.L. Gong, Selective oxidation of methanol to dimethoxymethane over bifunctional VOx/TS-1 catalysts, Chem. Commun. 47 (33) (2011) 9345 [59] S. Chen, X.B. Ma, The role of oxygen species in the selective oxidation of methanol to dimethoxymethane over VOx/TS-1 catalyst, J. Ind. Eng. Chem. 45 (2017) 296-300 [60] Royer S, Sécordel X, Brandhorst M, Dumeignil F, Cristol S, Dujardin C, Capron M, Payen E, Dubois JL, Amorphous oxide as a novel efficient catalyst for direct selective oxidation of methanol to dimethoxymethane, Chem. Commun. (Camb) (7) (2008) 865-867 [61] Y.Y. Tian, M. Yuan, S. Li, R.Y. Tang, P.J. Zong, Y.Y. Qiao, Effects of reaction conditions on one-step synthesis of methylal via methanol oxidation catalyzed by Mo:Fe(2)/HZSM-5 catalyst, Int. J. Energy Res. 45 (5) (2021) 7487-7500 [62] J. Faye, M. Capron, A. Takahashi, S. Paul, B. Katryniok, T. Fujitani, F. Dumeignil, Effect of oxomolybdate species dispersion on direct methanol oxidation to dimethoxymethane over MoOx/TiO2catalysts, Energy Sci. Eng. 3 (2) (2015) 115-125 [63] Secordel, X.; Tougerti, A.; Cristol, S.; Dujardin, C.; Blanck, D.; Morin, J. C.; Capron, M.; Mamede, A. S.; Paul, J. F.; Languille, M. A.; Bruckner, A.; Berrier, E., TiO2-anatase-supported oxorhenate catalysts prepared by oxidative redispersion of metal Re0 for methanol conversion to methylal:A multi-technique in situ/operando study. C. R. Chim. 17 (7-8) (2014)808-817 [64] H. Yu, K. Zeng, X.B. Fu, Y. Zhang, F. Peng, H.J. Wang, J. Yang, RuO2·xH2O supported on carbon nanotubes as a highly active catalyst for methanol oxidation, J. Phys. Chem. C 112 (31) (2008) 11875-11880 [65] M.L. Li, Y. Long, Z.Y. Deng, H. Zhang, X.G. Yang, G.Y. Wang, Ruthenium trichloride as a new catalyst for selective production of dimethoxymethane from liquid methanol with molecular oxygen as sole oxidant, Catal. Commun. 68 (2015) 46-48 [66] N. Meng, T. Yamakawa, S. Shinoda, Methanol dehydrogenation in the liquid phase with Ru/active carbon catalyst, React. Kinetics Catal. Lett. 58 (2) (1996) 341-348 [67] L.C. Yang, T. Ishida, T. Yamakawa, S. Shinoda, Mechanistic study on dehydrogenation of methanol with[RuCl2(PR3)3]-type catalyst in homogeneous solutions, J. Mol. Catal. A Chem. 108 (2) (1996) 87-93 [68] H. Itagaki, S. Shinoda, Y. Saito, Liquid-phase dehydrogenation of methanol with homogeneous ruthenium complex catalysts, Bull. Chem. Soc. Jpn. 61 (7) (1988) 2291-2294 [69] T.A. Smith, R.P. Aplin, P.M. Maitlis, The ruthenium-catalysed conversion of methanol into methyl formate, J. Organomet. Chem. 291 (1) (1985) c13-c14 [70] T. Yamakawa, T. Ohnishi, S. Shinoda, Methanol dehydrogenation in the liquid phase with Cu-based solid catalysts, Catal. Lett. 23 (3-4) (1994) 395-401 [71] L.B. Wu, B.L. Li, C. Zhao, Direct synthesis of hydrogen and dimethoxylmethane from methanol on copper/silica catalysts with optimal Cu+/Cu0 sites, ChemCatChem 10 (5) (2018) 1140-1147 [72] A.T. To, T.J. Wilke, E. Nelson, C.P. Nash, A. Bartling, E.C. Wegener, K.A. Unocic, S.E. Habas, T.D. Foust, D.A. Ruddy, Dehydrogenative coupling of methanol for the gas-phase, one-step synthesis of dimethoxymethane over supported copper catalysts, ACS Sustainable Chem. Eng. 8 (32) (2020) 12151-12160 [73] N. Y.Usachev, I. M. Krukovskii, S. A. Kanaev, The nonoxidative methanol dehydrogenation to formaldehyde (A review), Petrol. Chem. 44 (6) (2004)379-394 [74] R.Y. Sun, C. Mebrahtu, J.P. Hofmann, D. Bongartz, J. Burre, C.H. Gierlich, P.J.C. Hausoul, A. Mitsos, R. Palkovits, Hydrogen-efficient non-oxidative transformation of methanol into dimethoxymethane over a tailored bifunctional Cu catalyst, Sustain. Energy Fuels 5 (1) (2021) 117-126 [75] H.H. Yang, Y.Y. Chen, X.J. Cui, G.F. Wang, Y.L. Cen, T.S. Deng, W.J. Yan, J. Gao, S.H. Zhu, U. Olsbye, J.G. Wang, W.B. Fan, A highly stable copper-based catalyst for clarifying the catalytic roles of Cu0 and Cu+ species in methanol dehydrogenation, Angew. Chem. Int. Ed. 57 (7) (2018) 1836-1840 [76] C. Mebrahtu, R.Y. Sun, C.H. Gierlich, R. Palkovits, Unraveling the structure-activity relationships of Cu/H-BEA bifunctional catalyst for selective synthesis of dimethoxymethane by non-oxidative dehydrogenation of methanol, Appl. Catal. B Environ. 287 (2021) 119964 [77] Q.D. Zhang, Y.S. Tan, G.B. Liu, J.F. Zhang, Y.Z. Han, Rhenium oxide-modified H3PW12O40/TiO2catalysts for selective oxidation of dimethyl ether to dimethoxy dimethyl ether, Green Chem. 16 (11) (2014) 4708-4715 [78] H.C. Liu, E. Iglesia, Selective one-step synthesis of dimethoxymethane via methanol or dimethyl ether oxidation on H3+nVnMo12-nPO40 keggin structures, J. Phys. Chem. B 107 (39) (2003) 10840-10847 [79] Lee, K. Y.; Itoh, K.; Hashimoto, M.; Mizuno, N.; Misono, M. Selective oxidation of cyclopentene and cyclohexene by hydrogen peroxide catalyzed by heteropolyacids. Stud. Surf. Sci. Catal. 82 (1994), 583-591 [80] Q.D. Zhang, Y.S. Tan, C.H. Yang, Y.Z. Han, J. Shamoto, N. Tsubaki, Catalytic oxidation of dimethyl ether to dimethoxymethane over Cs modified H3PW12O40/SiO2 catalysts, J. Nat. Gas Chem. 16 (3) (2007) 322-325 [81] Q.D. Zhang, Y.S. Tan, C.H. Yang, Y.Z. Han, MnCl2 modified H4SiW12O40/SiO2 catalysts for catalytic oxidation of dimethy ether to dimethoxymethane, J. Mol. Catal. A Chem. 263 (1-2) (2007) 149-155 [82] Q.D. Zhang, Y.S. Tan, G.B. Liu, C.H. Yang, Y.Z. Han, Promotional effects of Sm2O3 on Mn-H4SiW12O40/SiO2 catalyst for dimethyl ether direct-oxidation to dimethoxymethane, J. Ind. Eng. Chem. 20 (4) (2014) 1869-1874 [83] Q.D. Zhang, Y.S. Tan, C.H. Yang, Y.Z. Han, Research on catalytic oxidation of dimethyl ether to dimethoxymethane over MnCl2 modified heteropolyacid catalysts, Catal. Commun. 9 (9) (2008) 1916-1919 [84] R.B. Duarte, S. Damyanova, D.C. de Oliveira, C.M.P. Marques, J.M.C. Bueno, Study of Sm2O3-doped CeO2-Al2O3-supported Pt catalysts for partial CH4 oxidation, Appl. Catal. A Gen. 399 (1-2) (2011) 134-145 [85] R.B. Duarte, M. Nachtegaal, J.M.C. Bueno, J.A. van Bokhoven, Understanding the effect of Sm2O3 and CeO2 promoters on the structure and activity of Rh/Al2O3 catalysts in methane steam reforming, J. Catal. 296 (2012) 86-98 [86] X.J. Gao, J.F. Zhang, F.E. Song, X.X. Wang, T. Zhang, Q.K. Jiang, Q.D. Zhang, Y.Z. Han, Y.S. Tan, Biomass-based carbon-supported sulfate catalyst for efficient synthesis of dimethoxymethane from direct oxidation of dimethyl ether, J. Phys. Chem. Lett. 12 (49) (2021) 11795-11801 [87] W.F. Wang, X.J. Gao, Q. Yang, X.X. Wang, F.E. Song, Q.D. Zhang, Y.Z. Han, Y.S. Tan, Vanadium oxide modified H-beta zeolite for the synthesis of polyoxymethylene dimethyl ethers from dimethyl ether direct oxidation, Fuel 238 (2019) 289-297 [88] K. Thenert, K. Beydoun, J. Wiesenthal, W. Leitner, J. Klankermayer, Ruthenium-catalyzed synthesis of dialkoxymethane ethers utilizing carbon dioxide and molecular hydrogen, Angew. Chem. Int. Ed Engl. 55 (40) (2016) 12266-12269 [89] W.F. Wang, X.J. Gao, R. Feng, Q. Yang, T. Zhang, J.F. Zhang, Q.D. Zhang, Y.Z. Han, Y.S. Tan, Hierarchical H-MOR zeolite supported vanadium oxide for dimethyl ether direct oxidation, Catalysts 9 (7) (2019) 628 [90] K.Y. Leng, Y. Wang, C.M. Hou, C. Lancelot, C. Lamonier, A. Rives, Y.Y. Sun, Enhancement of catalytic performance in the benzylation of benzene with benzyl alcohol over hierarchical mordenite, J. Catal. 306 (2013) 100-108 [91] N.V. Vlasenko, Y.N. Kochkin, Direct single-stage conversion of synthesis gas to dimethoxymethane:Influence of the sequence of metal introduction into Cu, Pd-zeolite catalysts on the degree of Cu and Pd reduction and catalyst acidity, Russ. J. Appl. Chem. 76 (10) (2003) 1615-1619 [92] J.Tan, H. Xie, H. Cui, Y.Han, B.Zhong, Effect of V2O5/Sm2O3 modification on alumina performance for slurry phase dimethyl ether synthesis. J. Fuel. Chem. Technol. 33 (5) (2005)602-606 [93] Q.D. Zhang, W.F. Wang, Z.Z. Zhang, Y.Z. Han, Y.S. Tan, Low-temperature oxidation of dimethyl ether to polyoxymethylene dimethyl ethers over CNT-supported rhenium catalyst, Catalysts 6 (3) (2016) 43 [94] X.J. Gao, W.F. Wang, Y.Y. Gu, Z.Z. Zhang, J.F. Zhang, Q.D. Zhang, N. Tsubaki, Y.Z. Han, Y.S. Tan, Synthesis of polyoxymethylene dimethyl ethers from dimethyl ether direct oxidation over carbon-based catalysts, ChemCatChem 10 (1) (2018) 273-279 [95] Q.D. Zhang, W.F. Wang, Z.Z. Zhang, J.F. Zhang, Y.Y. Bai, N. Tsubaki, Y.Z. Han, Y.S. Tan, Application of modified CNTs with Ti(SO4)2 in selective oxidation of dimethyl ether, Catal. Sci. Technol. 6 (19) (2016) 7193-7202 [96] Zhang J, Wang L, Wang G, et al. Hierarchical Sn-Beta Zeolite Catalyst for the Conversion of Sugars to Alkyl Lactates. ACS Sustain. Chem. Eng. 5 (4) (2017)3123-3131 [97] A.M. Bahmanpour, A. Hoadley, A. Tanksale, Formaldehyde production via hydrogenation of carbon monoxide in the aqueous phase, Green Chem. 17 (6) (2015) 3500-3507 [98] A.M. Bahmanpour, A. Hoadley, S.H. Mushrif, A. Tanksale, Hydrogenation of carbon monoxide into formaldehyde in liquid media, ACS Sustain. Chem. \& Eng. 4 (2016) 3970-3977 [99] M. Siebert, M. Seibicke, A.F. Siegle, S. Kräh, O. Trapp, Selective ruthenium-catalyzed transformation of carbon dioxide:An alternative approach toward formaldehyde, J Am Chem Soc 141 (1) (2019) 334-341 [100] B.G. Schieweck, J. Klankermayer, Tailor-made molecular cobalt catalyst system for the selective transformation of carbon dioxide to dialkoxymethane ethers, Angew Chem Int Ed Engl 56 (36) (2017) 10854-10857 [101] Ahmad W, Chan F L, Chaffee A L, et al. Dimethoxymethane Production via Catalytic Hydrogenation of Carbon Monoxide in Methanol Media. ACS. Sustain. Chem. Eng. 8(4) (2020)2081-2092 [102] W. Ahmad, F.L. Chan, A. Hoadley, H.T. Wang, A. Tanksale, Synthesis of oxymethylene dimethyl ethers (OMEn) via methanol mediated COx hydrogenation over Ru/BEA catalysts, Appl. Catal. B Environ. 269 (2020) 118765 [103] W. Ahmad, F.L. Chan, A. Shrotri, Y.N. Palai, H.T. Wang, A. Tanksale, Dimethoxymethane production via CO2 hydrogenation in methanol over novel Ru based hierarchical BEA, J. Energy Chem. 66 (2022) 181-189 |
[1] | Jinlong Liu, Chenye Wang, Xingrui Wang, Chen Zhao, Huiquan Li, Ganyu Zhu, Jianbo Zhang. Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method[J]. 中国化学工程学报, 2023, 60(8): 53-60. |
[2] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction[J]. 中国化学工程学报, 2023, 60(8): 165-172. |
[3] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol[J]. 中国化学工程学报, 2023, 60(8): 186-193. |
[4] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion[J]. 中国化学工程学报, 2023, 59(7): 1-8. |
[5] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination[J]. 中国化学工程学报, 2023, 59(7): 193-199. |
[6] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene[J]. 中国化学工程学报, 2023, 58(6): 69-75. |
[7] | Bin Lin, Wenyao Chen, Nan Song, Zhihua Zhang, Qianhong Wang, Wei Du, Xinggui Zhou, Xuezhi Duan. Mechanistic insights into propylene oxidation to acrolein over gold catalysts[J]. 中国化学工程学报, 2023, 57(5): 39-49. |
[8] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media[J]. 中国化学工程学报, 2023, 57(5): 50-62. |
[9] | Linlin Su, Meijun Chen, Li Gong, Hua Yang, Chao Chen, Jun Wu, Ling Luo, Gang Yang, Lulu Long. Boost activation of peroxymonosulfate by iron doped K2-xMn8O16: Mechanism and properties[J]. 中国化学工程学报, 2023, 57(5): 88-97. |
[10] | Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater[J]. 中国化学工程学报, 2023, 57(5): 338-348. |
[11] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures[J]. 中国化学工程学报, 2023, 56(4): 25-32. |
[12] | Da Ke, Minjia Wang, Jiancheng Ruan, Xinzhi Chen, Shaodong Zhou. Efficient, continuous oxidation of durene to pyromellitic dianhydride mediated by a V-Ti-P ternary catalyst: The remarkable doping effect[J]. 中国化学工程学报, 2023, 55(3): 156-164. |
[13] | Qiongna Xiao, Yuyan Jiang, Weiqiang Yuan, Jingjing Chen, Haohong Li, Huidong Zheng. Styrene epoxidation catalyzed by polyoxometalate/quaternary ammonium phase transfer catalysts: The effect of cation size and catalyst deactivation mechanism[J]. 中国化学工程学报, 2023, 55(3): 192-201. |
[14] | Bowen Jiang, Jia Liu, Guoqiang Yang, Zhibing Zhang. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s[J]. 中国化学工程学报, 2023, 55(3): 202-211. |
[15] | Peipei Ai, Li Zhang, Jinchi Niu, Huiqing Jin, Wei Huang. Boron-doped lamellar porous carbon supported copper catalyst for dimethyl oxalate hydrogenation[J]. 中国化学工程学报, 2023, 55(3): 222-229. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||