[1] P.L. Boardman, G. Nuki, F.D. Hart, Ibuprofen in the treatment of rheumatoid arthritis and osteo-arthritis, Ann Rheum Dis 26 (6) (1967) 560-561 [2] S.S. Adams, R. Cobb, Progress in Medicinal Chemistry, Elsevier, Netherlands. 1967 [3] K.D. Rainsford, Ibuprofen[M]. Chichester, UK:John Wiley & Sons, Ltd, 2015 [4] N. Collins, J. Malerich, J. Szeto, J.A. Kozocas, Continuous flow synthesis of ibuprofen, US20210114962A1, Patent, United States, 2021. [5] R. Perron, Process for the Carbonylation of Arylalkyl Halides, Rhone-Poulenc Industries, United States. 1979 [6] J. Yoshida, A. Nagaki, D. Yamada, Continuous flow synthesis, Drug Discov Today Technol 10 (1) (2013) e53-e59 [7] D.T. McQuade, A. Bogdan, S.L. Poe, Method and apparatus for continuous flow synthesis of ibuprofen, United States Patent 20110054208, 2013. [8] K. Plumb, Continuous processing in the pharmaceutical industry:changing the mind set, Chem. Eng. Res. Des. 83 (6) (2005) 730-738 [9] A.R. Bogdan, S.L. Poe, D.C. Kubis, S.J. Broadwater, D.T. McQuade, The continuous-flow synthesis of Ibuprofen, Angew Chem Int Ed Engl 48 (45) (2009) 8547-8550 [10] H. Wolff, M. Kather, H. Breisig, W. Richtering, A. Pich, M. Wessling, From batch to continuous precipitation polymerization of thermoresponsive microgels, ACS Appl. Mater. Interfaces 10 (29) (2018) 24799-24806 [11] P.B. Palde, T.F. Jamison, Safe and efficient tetrazole synthesis in a continuous-flow microreactor, Angew. Chem. Int. Ed. 50 (15) (2011) 3525-3528 [12] R.E. Swaney, I.E. Grossmann, An index for operational flexibility in chemical process design. Part I:Formulation and theory, AIChE J. 31 (4) (1985) 621-630 [13] M.P. Ochoa, S. García-Muñoz, S. Stamatis, I.E. Grossmann, Novel flexibility index formulations for the selection of the operating range within a design space, Comput. Chem. Eng. 149 (2021) 107284 [14] G. V. Reklaitis, Comprehensive Quality by Design for Pharmaceutical Product Development and Manufacture, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2017 [15] D.F. Marselle, M. Morari, D.F. Rudd, Design of resilient processing plants-II Design and control of energy management systems, Chem. Eng. Sci. 37 (2) (1982) 259-270 [16] C.A. Floudas, I.E. Grossmann, Synthesis of flexible heat exchanger networks with uncertain flowrates and temperatures, Comput. Chem. Eng. 11 (4) (1987) 319-336 [17] B.Z. Chen, A.W. Westerberg, Structural flexibility for heat integrated distillation columns-I. Analysis, Chem. Eng. Sci. 41 (2) (1986) 355-363 [18] R.M. Wagler, P.L. Douglas, A method for the design of flexible distillation sequence, Can. J. Chem. Eng. 66 (4) (1988) 579-590 [19] D.C.H. Chien, P.L. Douglas, A. Penlidis, A method for flexibility analysis of continuous processing plants, Can. J. Chem. Eng. 69 (1) (1991) 58-66 [20] S. Diaz, E.A. Brignole, A. Bandoni, Flexibility study on a dual mode natural gas plant in operation, Chem. Eng. Commun. 189 (5) (2002) 623-641 [21] E.E. Tarifa, S. Franco, D. Humana, S. Mussati, Flexibility study for an MSF desalination plant, Desalination Water Treat. 10 (1-3) (2009) 229-237 [22] M.J. Mohideen, J.D. Perkins, E.N. Pistikopoulos, Robust stability considerations in optimal design of dynamic systems under uncertainty, J. Process. Control. 7 (5) (1997) 371-385 [23] J.L. Pulsipher, V.M. Zavala, A mixed-integer conic programming formulation for computing the flexibility index under multivariate Gaussian uncertainty, Comput. Chem. Eng. 119 (2018) 302-308 [24] J.L. Pulsipher, D. Rios, V.M. Zavala, A computational framework for quantifying and analyzing system flexibility, Comput. Chem. Eng. 126 (2019) 342-355 [25] F. Boukouvala, M.G. Ierapetritou, Surrogate-based optimization of expensive flowsheet modeling for continuous pharmaceutical manufacturing, J. Pharm. Innov. 8 (2) (2013) 131-145 [26] Z.L. Wang, M. Ierapetritou, A novel feasibility analysis method for black-box processes using a radial basis function adaptive sampling approach, AIChE J. 63 (2) (2017) 532-550 [27] M.P. Ochoa, I.E. Grossmann, Novel MINLP formulations for flexibility analysis for measured and unmeasured uncertain parameters, Comput. Chem. Eng. 135 (2020) 106727 [28] Q. Zhang, W. Feng, A unified framework for adjustable robust optimization with endogenous uncertainty, AIChE J. 66 (12) (2020) e17047 [29] L.T. Biegler, I.E. Grossmann, A.W. Westerberg, Systematic Methods for Chemical Process Design, United States, 1997. [30] E.N. Pistikopoulos, Uncertainty in process design and operations, Comput. Chem. Eng. 19 (1995) 553-563 [31] K.P. Halemane, I.E. Grossmann, Optimal process design under uncertainty, AIChE J. 29 (3) (1983) 425-433 [32] I.E. Grossmann, C.A. Floudas, Active constraint strategy for flexibility analysis in chemical processes, Comput. Chem. Eng. 11 (6) (1987) 675-693 [33] G.M. Ostrovsky, I.V. Datskov, L.E.K. Achenie, Y.M. Volin, Process uncertainty:Case of insufficient process data at the operation stage, AIChE J. 49 (5) (2003) 1216-1232 [34] G.M. Ostrovsky, L.E.K. Achenie, I.V. Datskov, Y.M. Volin, Flexibility analysis in the case of incomplete information about uncertain parameters, Ann. Oper. Res. 132 (1) (2004) 257-275 [35] S. Boyd, L. Vandenberghe, Convex optimization[M]. Cambridge:Cambridge University Press, 2004 [36] I.E. Grossmann, K.P. Halemane, R.E. Swaney, Optimization strategies for flexible chemical processes, Comput. Chem. Eng. 7 (4) (1983) 439-462 [37] M.P. Ochoa, A. Deshpande, S. García-Muñoz, S. Stamatis, I.E. Grossmann, Flexibility analysis for design space definition. Computer Aided Chemical Engineering. Amsterdam:Elsevier, 2019:323-328 [38] W.F. Chen, L.T. Biegler, S.G. Muñoz, An approach for simultaneous estimation of reaction kinetics and curve resolution from process and spectral data, J. Chemometrics 30 (9) (2016) 506-522 [39] D. Laky, S. Xu, J. Rodriguez, S. Vaidyaraman, S. García Muñoz, C. Laird, An optimization-based framework to define the probabilistic design space of pharmaceutical processes with model uncertainty, Processes 7 (2) (2019) 96 |