[1] E. Routoula, S.V. Patwardhan, Degradation of anthraquinone dyes from effluents: A review focusing on enzymatic dye degradation with industrial potential, Environ. Sci. Technol. 54 (2) (2020) 647–664. https://doi.org/10.1021/acs.est.9b03737 [2] C. Zafiu, F. Part, E.K. Ehmoser, M.A. Kähkönen, Investigations on inhibitory effects of nickel and cobalt salts on the decolorization of textile dyes by the white rot fungus Phanerochaete velutina, Ecotoxicol. Environ. Saf. 215 (2021) 112093. http://dx.doi.org/10.1016/j.ecoenv.2021.112093 [3] Q. Long, Z. Zhang, G. Qi, Z. Wang, Y. Chen, Z.Q. Liu, Fabrication of chitosan nanofiltration membranes by the film casting strategy for effective removal of dyes/salts in textile wastewater, ACS Sustain. Chem. Eng. 8(6) (2020) 2512–2522 [4] R.D.G. Franca, H.M. Pinheiro, N.D. Lourenço, Recent developments in textile wastewater biotreatment: Dye metabolite fate, aerobic granular sludge systems and engineered nanoparticles, Rev. Environ. Sci. Bio/technology 19 (1) (2020) 149–190. http://dx.doi.org/10.1007/s11157-020-09526-0 [5] P. Mahajan, J. Kaushal, Phytoremediation of azo dye methyl red by macroalgae Chara vulgaris L.: Kinetic and equilibrium studies, Environ Sci Pollut Res Int 27 (21) (2020) 26406–26418. https://www.ncbi.nlm.nih.gov/pubmed/32363459/ [6] T.H. Nguyen, T. Watari, M. Hatamoto, T. Setiadi, T. Yamaguchi, Enhanced decolorization of dyeing wastewater in a sponges-submerged anaerobic reactor, Chemosphere 279 (2021) 130475. https://www.ncbi.nlm.nih.gov/pubmed/34134399/ [7] F. Ameen, T.M. Dawoud, F. Alshehrei, K. Alsamhary, A. Almansob, Decolorization of acid blue 29, disperse red 1 and Congo red by different indigenous fungal strains, Chemosphere 271 (2021) 129532. https://www.ncbi.nlm.nih.gov/pubmed/33429264/ [8] L. Majul, S. Wirth, L. Levin, High dye removal capacity of Peniophora laxitexta immobilized in a combined support based on polyurethane foam and lignocellulosic substrates, Environ Technol (2020) 1–12. https://www.ncbi.nlm.nih.gov/pubmed/32713269/ [9] K. Rybczyńska-Tkaczyk, T. Korniłłowicz-Kowalska, K.A. Szychowski, J. Gmiński, Biotransformation and toxicity effect of monoanthraquinone dyes during Bjerkandera adusta CCBAS 930 cultures, Ecotoxicol. Environ. Saf. 191 (2020) 110203. http://dx.doi.org/10.1016/j.ecoenv.2020.110203 [10] U. Roy, S. Sengupta, P. Banerjee, P. Das, A. Bhowal, S. Datta, Assessment on the decolourization of textile dye (Reactive Yellow) using Pseudomonas sp. immobilized on fly ash: Response surface methodology optimization and toxicity evaluation, J. Environ. Manag. 223 (2018) 185–195. http://dx.doi.org/10.1016/j.jenvman.2018.06.026 [11] S. Varjani, P. Rakholiya, H.Y. Ng, S.M. You, J.A. Teixeira, Microbial degradation of dyes: An overview, Bioresour. Technol. 314 (2020) 123728. http://dx.doi.org/10.1016/j.biortech.2020.123728 [12] Shalini, P.S. Y, Multistage fluidized bed bioreactor for dye decolorization using immobilized polyurethane foam: A novel approach, Biochem. Eng. J. 152 (2019) 107368. http://dx.doi.org/10.1016/j.bej.2019.107368 [13] V. Katheresan, J. Kansedo, S.Y. Lau, Efficiency of various recent wastewater dye removal methods: A review, J. Environ. Chem. Eng. 6 (4) (2018) 4676–4697. http://dx.doi.org/10.1016/j.jece.2018.06.060 [14] G. Rajhans, S.K. Sen, A. Barik, S. Raut, De-colourization of textile effluent using immobilized Geotrichum candidum: An insight into mycoremediation, Lett. Appl. Microbiol. 72 (4) (2021) 445–457. https://doi.org/10.1111/lam.13430 [15] L. Tan, H. Li, S.X. Ning, B.W. Xu, Aerobic decolorization and degradation of azo dyes by suspended growing cells and immobilized cells of a newly isolated yeast Magnusiomyces ingens LH-F1, Bioresour. Technol. 158 (2014) 321–328. http://dx.doi.org/10.1016/j.biortech.2014.02.063 [16] B.B. Hameed, Z.Z. Ismail, Biodegradation of reactive yellow dye using mixed cells immobilized in different biocarriers by sequential anaerobic/aerobic biotreatment: Experimental and modelling study, Environ Technol 42 (19) (2021) 2991–3010. https://www.ncbi.nlm.nih.gov/pubmed/31973674/ [17] R. Alam, F.C. Ardiati, N.N. Solihat, M.B. Alam, S.H. Lee, D.H.Y. Yanto, T. Watanabe, S. Kim, Biodegradation and metabolic pathway of anthraquinone dyes by Trametes hirsuta D7 immobilized in light expanded clay aggregate and cytotoxicity assessment, J Hazard Mater 405 (2021) 124176. https://www.ncbi.nlm.nih.gov/pubmed/33131941/ [18] P.M. Gotovtsev, E.Y. Yuzbasheva, K.V. Gorin, V.V. Butylin, G.U. Badranova, N.I. Perkovskaya, E.B. Mostova, Z.B. Namsaraev, N.I. Rudneva, A.V. Komova, R.G. Vasilov, S.P. Sineokii, Immobilization of microbial cells for biotechnological production: Modern solutions and promising technologies, Appl. Biochem. Microbiol. 51 (8) (2015) 792–803. https://doi.org/10.1134/s0003683815080025 [19] V. Gómez-Toribio, A.B. García-Martín, M.J. Martínez, A.T. Martínez, F. Guillén, Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling, Appl Environ Microbiol 75 (12) (2009) 3944–3953. https://www.ncbi.nlm.nih.gov/pubmed/19376892/ [20] Q.Y. Li, H. Lu, Y.X. Yin, Y.M. Qin, A.X. Tang, H.B. Liu, Y.Y. Liu, Synergic effect of adsorption and biodegradation enhance cyanide removal by immobilized Alcaligenes sp. strain DN25, J Hazard Mater 364 (2019) 367–375. https://www.ncbi.nlm.nih.gov/pubmed/30384247/ [21] H. Lu, J. Wang, S.L. Lu, Y. Wang, G.F. Liu, J.T. Zhou, Z.X. Quan, Influence of azo dye concentration on activated sludge bacterial community in the presence of functionalized polyurethane foam, Appl Biochem Biotechnol 175 (5) (2015) 2574–2588. https://www.ncbi.nlm.nih.gov/pubmed/25542241/ [22] D.W. Gao, Y.G. Zeng, X.H. Wen, Y. Qian, Competition strategies for the incubation of white rot fungi under non-sterile conditions, Process. Biochem. 43 (9) (2008) 937–944. http://dx.doi.org/10.1016/j.procbio.2008.04.026 [23] E. Dacewicz, J. Grzybowska-Pietras, Polyurethane foams for domestic sewage treatment, Materials (Basel) 14 (4) (2021) 933. https://www.ncbi.nlm.nih.gov/pubmed/33669295/ [24] L.B. Chu, J.L. Wang, F. Quan, X.H. Xing, L.M. Tang, C. Zhang, Modification of polyurethane foam carriers and application in a moving bed biofilm reactor, Process. Biochem. 49 (11) (2014) 1979–1982. http://dx.doi.org/10.1016/j.procbio.2014.07.018 [25] A. Khataee, B. Kayan, P. Gholami, D. Kalderis, S. Akay, Sonocatalytic degradation of an anthraquinone dye using TiO2-biochar nanocomposite, Ultrason Sonochem 39 (2017) 120–128. https://www.ncbi.nlm.nih.gov/pubmed/28732928/ [26] N. Cheng, Q.Y. Li, A.X. Tang, W. Su, Y.Y. Liu, Decolorization of a variety of dyes by Aspergillus flavus A5p1, Bioprocess Biosyst. Eng. 41 (4) (2018) 511–518. http://dx.doi.org/10.1007/s00449-017-1885-9 [27] K.K. Prasad, S.V. Mohan, Y.V. Bhaskar, S.V. Ramanaiah, V.L. Babu, B.R. Pati, P.N. Sarma, Laccase production using Pleurotus ostreatus 1804 immobilized on PUF cubes in batch and packed bed reactors: Influence of culture conditions, J Microbiol 43 (3) (2005) 301–307. https://www.ncbi.nlm.nih.gov/pubmed/15995650/ [28] S. Hama, K. Onodera, A. Yoshida, H. Noda, A. Kondo, Improved production of phospholipase A1 by recombinant Aspergillus oryzae through immobilization to control the fungal morphology under nutrient-limited conditions, Biochem. Eng. J. 96 (2015) 1–6. http://dx.doi.org/10.1016/j.bej.2014.12.013 [29] V.C. Padmanaban, S.R. Geed, A. Achary, R.S. Singh, Kinetic studies on degradation of Reactive Red 120 dye in immobilized packed bed reactor by Bacillus cohnii RAPT1, Bioresour. Technol. 213 (2016) 39–43. http://dx.doi.org/10.1016/j.biortech.2016.02.126 [30] T.J. Yuan, S.Y. Zhang, Y.F. Chen, R. Zhang, L.T. Chen, X.S. Ruan, S. Zhang, F. Zhang, Enhanced reactive blue 4 biodegradation performance of newly isolated white rot fungus antrodia P5 by the synergistic effect of herbal extraction residue, Front. Microbiol. 12 (2021) 644679. DOI:10.3389/fmicb.2021.644679. https://doi.org/10.3389/fmicb.2021.644679 [31] P. Šlosarčíková, Č. Novotný, K. Malachová, H. Válková, J. Fojtík, Effect of yeasts on biodegradation potential of immobilized cultures of white rot fungi, Sci. Total. Environ. 589 (2017) 146–152. http://dx.doi.org/10.1016/j.scitotenv.2017.02.079 [32] K. Praveen, Kinetic properties of manganese peroxidase from the mushroom stereum ostrea and its ability to decolorize dyes, J. Microbiol. Biotechnol. 22 (11) (2012) 1540–1548. https://doi.org/10.4014/jmb.1112.12011 [33] A.R. Binupriya, M. Sathishkumar, C.S. Ku, S.I. Yun, Sequestration of Reactive Blue 4 by free and immobilized Bacillus subtilis cells and its extracellular polysaccharides, Colloids Surfaces B: Biointerfaces 76 (1) (2010) 179–185. http://dx.doi.org/10.1016/j.colsurfb.2009.10.031 [34] S. Romero, P. Blánquez, G. Caminal, X. Font, M. Sarrà, X. Gabarrell, T. Vicent, Different approaches to improving the textile dye degradation capacity of Trametes versicolor, Biochem. Eng. J. 31 (1) (2006) 42–47. http://dx.doi.org/10.1016/j.bej.2006.05.018 [35] P. Kilonzo, A. Margaritis, M. Bergougnou, Effects of surface treatment and process parameters on immobilization of recombinant yeast cells by adsorption to fibrous matrices, Bioresour Technol 102 (4) (2011) 3662–3672. https://www.ncbi.nlm.nih.gov/pubmed/21185170/ [36] X.Q. Li, J.M. Xu, R.A. de Toledo, H. Shim, Enhanced removal of naproxen and carbamazepine from wastewater using a novel countercurrent seepage bioreactor immobilized with Phanerochaete chrysosporium under non-sterile conditions, Bioresour Technol 197 (2015) 465–474. https://www.ncbi.nlm.nih.gov/pubmed/26356119/ [37] B. Yu, X. Zhang, W.J. Sun, X. Xi, N. Zhao, Z.C. Huang, Z.J. Ying, L. Liu, D. Liu, H.Q. Niu, J.L. Wu, W. Zhuang, C.J. Zhu, Y. Chen, H.J. Ying, Continuous citric acid production in repeated-fed batch fermentation by Aspergillus Niger immobilized on a new porous foam, J Biotechnol 276-277 (2018) 1–9. https://www.ncbi.nlm.nih.gov/pubmed/29588182/ [38] F. Bosco, C. Mollea, B. Ruggeri, Decolorization of Congo Red by Phanerochaete chrysosporium: The role of biosorption and biodegradation, Environ Technol 38 (20) (2017) 2581–2588. https://www.ncbi.nlm.nih.gov/pubmed/27931174/ [39] K. Kumar, M. Dastidar, T. Sreekrishnan, Effect of process parameters on aerobic decolourization of reactive azo dye using mixed culture, World Acad. Sci. Eng. Technol 58 (2009) 952-955 [40] V. Gómez-Toribio, A.B. García-Martín, M.J. Martínez, A.T. Martínez, F. Guillén, Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling, Appl Environ Microbiol 75 (12) (2009) 3944–3953. https://www.ncbi.nlm.nih.gov/pubmed/19376892/ [41] A.U. Chaudhari, D. Paul, D. Dhotre, K.M. Kodam, Effective biotransformation and detoxification of anthraquinone dye reactive blue 4 by using aerobic bacterial granules, Water Res 122 (2017) 603–613. https://www.ncbi.nlm.nih.gov/pubmed/28628882/ [42] N. Okazaki, S. Sugama, T. Tanaka, Mathematical model for surface culture of koji mold: Growth of koji mold on the surface of steamed rice grains (IX), J. Ferment. Technol. 58(5) (1980) 471-476 [43] A. Merino, G. Eibes, A. Hormaza, Effect of copper and different carbon and nitrogen sources on the decolorization of an industrial dye mixture under solid-state fermentation, J. Clean. Prod. 237 (2019) 117713. http://dx.doi.org/10.1016/j.jclepro.2019.117713 [44] V. Gómez-Toribio, A.B. García-Martín, M.J. Martínez, A.T. Martínez, F. Guillén, Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling, Appl Environ Microbiol 75 (12) (2009) 3944–3953. https://www.ncbi.nlm.nih.gov/pubmed/19376892/ [45] V. Gómez-Toribio, A.B. García-Martín, M.J. Martínez, A.T. Martínez, F. Guillén, Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling, Appl Environ Microbiol 75 (12) (2009) 3944–3953. https://www.ncbi.nlm.nih.gov/pubmed/19376892/ [46] V. Gómez-Toribio, A.B. García-Martín, M.J. Martínez, A.T. Martínez, F. Guillén, Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling, Appl Environ Microbiol 75 (12) (2009) 3944–3953. https://www.ncbi.nlm.nih.gov/pubmed/19376892/ [47] B. Gözmen, B. Kayan, A.M. Gizir, A. Hesenov, Oxidative degradations of reactive blue 4 dye by different advanced oxidation methods, J. Hazard. Mater. 168 (1) (2009) 129–136. http://dx.doi.org/10.1016/j.jhazmat.2009.02.011 [48] Ali, Q. Husain, S. Sultana, M. Ahmad, Immobilization of peroxidase on polypyrrole-cellulose-graphene oxide nanocomposite via non-covalent interactions for the degradation of Reactive Blue 4 dye, Chemosphere 202 (2018) 198–207. https://www.ncbi.nlm.nih.gov/pubmed/29571140/ |