[1] C. Brogren, H.T. Karlsson, The impact of the electrical potential gradient on limestone dissolution under wet flue gas desulfurization conditions, Chem. Eng. Sci. 52 (18) (1997) 3101–3106. [2] L. Wang, M.C. Zhang, Y. Huang, G.L. Xie, Y.G. Zhou, F.G. Tian, Desulfurization and drying characteristic of Ca(OH)2 slurry, J. Shanghai Jiaotong Univ. 39 (8) (2005) 1209–1213. (in Chinese) [3] M.Y. Cai, X.L. Liu, T.Y. Zhu, Y. Zou, W.L. Tao, M.K. Tian, Simultaneous removal of SO2 and NO using a spray dryer absorption (SDA) method combined with O3 oxidation for sintering/pelleting flue gas, J. Environ. Sci. (China) 96 (2020) 64–71. [4] F.F. Hill, J. Zank, Flue gas desulphurization by spray dry absorption, Chem. Eng. Process. Process. Intensif. 39 (1) (2000) 45–52. [5] Q. Li, J.C. Cheng, C. Yang, Z.S. Mao, CFD-PBE-PBE simulation of an airlift loop crystallizer, Can. J. Chem. Eng. 96 (6) (2018) 1382–1395. [6] M. Kadja, G. Bergeles, Modelling of slurry droplet drying, Appl. Therm. Eng. 23 (7) (2003) 829–844. [7] J. Katolicky, M. Jicha, Influence of the lime slurry droplet spectrum on the efficiency of semi-dry flue gas desulfurization, Chem. Eng. Technol. 36 (1) (2013) 156–166. [8] G. Krammer, H.K. Reissner, G. Staudinger, Cyclic activation of calcium hydroxide for enhanced desulfurization, Chem. Eng. Process. Process. Intensif. 41 (5) (2002) 463–471. [9] H.M. Yang, S.S. Kim, Experimental study on the spray characteristics in the spray drying absorber, Environ. Sci. Technol. 34 (21) (2000) 4582–4586. [10] L. Ding, B. Wu, P.C. Luo, Preparation of CaCO3 nanoparticles in a surface-aerated tank stirred by a long-short blades agitator, Powder Technol. 333 (2018) 339–346. [11] X.C. Wu, C. Li, J.Z. Cao, Y.X. Zhang, L.H. Chen, G. Grehan,K.F. Cen, In-situ characterization of gas–liquid precipitation reaction in a spray using rainbow refractometry, J. Zhejiang Univ.-Sci. A 19 (1)(2018) 86-94. [12] C.F. Liu, S.M. Shih, R.B. Lin, Kinetics of the reaction of Ca(OH)2/fly ash sorbent with SO2 at low temperatures, Chem. Eng. Sci. 57 (1) (2002) 93–104. [13] M.V. Dagaonkar, A.A.C.M. Beenackers, V.G. Pangarkar, Enhancement of gas–liquid mass transfer by small reactive particles at realistically high mass transfer coefficients: Absorption of sulfur dioxide into aqueous slurries of Ca(OH)2 and Mg(OH)2 particles, Chem. Eng. J. 81 (1–3) (2001) 203–212. [14] H. Zhou, Y.L. Song, Q.W. Wu, Application of magnified digital in-line holography (MDIH) to the measurement of the evaporation process of desulfurization wastewater droplets in a high-temperature gas flow, Fuel 292 (2021) 120307. [15] M. Sommerfeld, H.H. Qiu, Experimental studies of spray evaporation in turbulent flow, Int. J. Heat Fluid Flow 19 (1) (1998) 10–22. [16] T. Li, K. Nishida, H. Hiroyasu, Droplet size distribution and evaporation characteristics of fuel spray by a swirl type atomizer, Fuel 90 (7) (2011) 2367–2376. [17] D. Nguyen, D. Honnery, J. Soria, Measuring evaporation of micro-fuel droplets using magnified DIH and DPIV, Exp. Fluids 50 (4) (2011) 949–959. [18] M. Seifi, C. Fournier, N. Grosjean, L. Méès, J.L. Marié, L. Denis, Accurate 3D tracking and size measurement of evaporating droplets using in-line digital holography and “inverse problems” reconstruction approach, Opt. Express 21 (23) (2013) 27964–27980. [19] Middle School Chemistry National Curriculum Standard Development Group, Compulsory Education Textbook of Chemistry (Volume 2 for Grade 9), Shanghai Education Press, Shanghai (2012). (in Chinese) [20] D. Chareyron,J.L. Marié,C. Fournier,J. Gire,N. Grosjean,L. Denis,M. Lance,L. Méès,Testing an in-line digital holography ‘inverse method’ for the Lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,New J. Phys.14(2012) 043039. [21] X.C. Wu, S. Meunier-Guttin-Cluzel, Y.C. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L.H. Chen, S. Coetmellec, K.F. Cen, G. Grehan, Holography and micro-holography of particle fields: A numerical standard, Opt. Commun. 285 (13–14) (2012) 3013–3020. [22] M. Balla, M. Kumar Tripathi, K.C. Sahu, Shape oscillations of a nonspherical water droplet, Phys. Rev. E 99 (2) (2019) 023107. [23] M. Agrawal, A.R. Premlata, M.K. Tripathi, B. Karri, K.C. Sahu, Nonspherical liquid droplet falling in air, Phys. Rev. E 95 (3) (2017) 033111. [24] M.K. Tripathi, K.C. Sahu, Evaporating falling drop, Procedia IUTAM 15 (2015) 201–206. [25] M. Balla, M.K. Tripathi, K.C. Sahu, A numerical study of a hollow water droplet falling in air, Theor. Comput. Fluid Dyn. 34 (1–2) (2020) 133–144. [26] M. Agrawal, R.K. Katiyar, B. Karri, K.C. Sahu, Experimental investigation of a nonspherical water droplet falling in air, Phys. Fluids 32 (11) (2020) 112105. [27] H. Zhou, Z. Yang, Z.G. Yao, K.F. Cen, Application of digital holographic microscopy and microfluidic chips to the measurement of particle size distribution of fly ash after a wet electrostatic precipitator, Flow Meas. Instrum. 60 (2018) 24–29. [28] X.C. Wu, L.C. Yao, Y.C. Wu, X.D. Lin, L.H. Chen, J. Chen, X. Gao, K.F. Cen, In-situ characterization of coal particle combustion via long working distance digital in-line holography, Energy Fuels 32 (8) (2018) 8277–8286. [29] C.S. Handscomb, M. Kraft, A.E. Bayly, A new model for the drying of droplets containing suspended solids after shell formation, Chem. Eng. Sci. 64 (2) (2009) 228–246. [30] J.D. Griffith, A.E. Bayly, M.L. Johns, Evolving micro-structures in drying detergent pastes quantified using NMR, J. Colloid Interface Sci. 315 (1) (2007) 223–229. [31] F. Tavakoli, S.H. Davis, H.P. Kavehpour, Spreading and arrest of a molten liquid on cold substrates, Langmuir 30 (34) (2014) 10151–10155. [32] R. de Ruiter, P. Colinet, P. Brunet, J.H. Snoeijer, H. Gelderblom, Contact line arrest in solidifying spreading drops, Phys. Rev. Fluids 2 (4) (2017) 043602. [33] S.Y. Misyura, The crystallization behavior of the aqueous solution of CaCl2 salt in a drop and a layer, Sci. Rep. 10 (1) (2020) 256. |