[1] H. Singh, H.G. Gokhale, A new stability concept for propellants, Def. Sci. J. 35 (4) (1985) 417–423. [2] P. Ase, W. Eisenberg, S. Gordon, K. Taylor, A. Snelson, Propellant combustion product analyses on an M16 rifle and a 105mm caliber Gun, J. Environ. Sci. Heal. A Environ. Sci. Eng. 20 (3) (1985) 337–368. [3] Q.L. Wang, S.W. Li, Z.S. Wang, Research development for diffusion of deterrent in gun propellant, Chin. J. Explos. Propell. 23 (1) (2000) 14–16. (in Chinese) [4] S. Pan, Z.Y. Huang, X. Zhang, X.M. Hu, Property improvement on two reactive surface deterrents of azidonitramine gun propellant, Chin. J. Explos. Propell. 41 (1) (2018) 102–106. (in Chinese) [5] P.Q. Hieu, Regulation of burning speed for the granules of high energy materials in military field (single-based propellant) using absorption of camphor methods,Vietnam J. Sci. Technol. 56 (2A) (2018) 51–55. [6] B.W. Brodman, M.P. Devine, R.W. Finch, M.S. MacClaren, Autoradiographic determination of the di-n-butyl phthalate concentration profile in a nitrocellulose matrix, J. Appl. Polym. Sci. 18 (12) (1974) 3739–3744. [7] T. Kairn, P.J. Daivis, I. Ivanov, S.N. Bhattacharya, Molecular-dynamics simulation of model polymer nanocomposite rheology and comparison with experiment, J. Chem. Phys.123 (19) (2005) 194905. [8] J.S. Wei, Diffusion behavior of small molecule desensitizer in single base propellant, Ph. D. Thesis, Nanjing University of Technology, China, 2012. (in Chinese) [9] B. Liu, B.M. Zhao, B. Chen, F.S. Ma, Q.L. Wang, S.W. Liu, Research for diffusion of the polymer deterrent in the gun propellant, In: Proceedings of the 31st International Symposium on Ballistics, Hyderabad, India, November 4-8, 2019, pp. 428–434. [10] J.M. García-Ruiz, F. Otálora, Concentration distribution around a crystal growing under diffusional control; A computer simulation, J. Cryst. Growth 118 (1–2) (1992) 160–162. [11] Y.N. Zheng, Q. Liu, Y. Li, N. Gindy, Investigation on concentration distribution and mass flow rate measurement for gravity chute conveyor by optical tomography system, Measurement 39 (7) (2006) 643–654. [12] H. Takeuchi, K. Okazaki, Molecular dynamics simulation of diffusion of simple gas molecules in a short chain polymer, J. Chem. Phys. 92 (9) (1990) 5643–5652. [13] P.A. Zhang, T.Q. Li, S.M. Liu, J.R. Deng, Effects of NPBA on interface interaction and mechanical properties of NEPE propellant: Insight from molecular dynamics simulation, Comp. Mater. Sci. 171 (2020) 109135. [14] Y.F. Ding, H. Liang, Y.J. Ding, Z.L. Xiao, Molecular dynamics simulation of DBP and NA diffusion properties in gun propellant, Chin. J. Energ. Mater. 29 (1) (2021) 65–73. (in Chinese) [15] P.G. de Gennes, Introduction to Polymer Dynamics, Cambridge University Press, Cambridge, 1990. [16] B.W. Brodman, J.A. Sipia, S. Schwartz, Diffusion of deterrents into a nitrocellulose matrix. An example of diffusion with interaction, J. Appl. Polym. Sci. 19 (7) (1975) 1905–1909. [17] R. Eshaghi Malekshah, B. Fahimirad, M. Aallaei, A. Khaleghian, Synthesis and toxicity assessment of Fe3O4 NPs grafted by approximately NH2-Schiff base as anticancer drug: Modeling and proposed molecular mechanism through docking and molecular dynamic simulation, Drug Deliv. 27 (1) (2020) 1201–1217. [18] E. Rocco, The COMPASS future: COMPASS II, Prog. Part. Nucl. Phys. 67 (2) (2012) 288–293. [19] S.R. Anderson, D.J. Am Ende, J.S. Salan, P. Samuels, Preparation of an energetic‐energetic cocrystal using resonant acoustic mixing, Propell. Explos. Pyrot. 39 (5) (2014) 637–640. [20] A.N. Pour, M. Zare, Y. Zamani, Studies on product distribution of alkali promoted iron catalyst in Fischer-Tropsch synthesis, J. Nat. Gas Chem. 19 (2010) 31–34. [21] Y.J. Ding, S. Zhang, S.J. Ying, Z.L. Xiao, Fabrication and combustion properties of TEGN/RDX based microcellular combustible objects, Chin. J. Explos. Propell. 42 (4) (2019) 25–30. (in Chinese) [22] L.G. Wang, L.I. Xiao-Jiang, B. Kang, J. Zhao, Z.W. Song, Research on crystallization behavior of NC/PEG blends, Initiators Pyrotech. (5) (2012) 44–47. (in Chinese) [23] D.N. Saheb, J.P. Jog, Crystallization and equilibrium melting behavior of PBT/PETG blends, J. Polym. Sci. B Polym. Phys. 37 (17) (1999) 2439–2444. [24] M.H. Kong, D.X. Wu, X.B. Chen, Qualitative and quantitative studies on artemisinin with Raman spectroscopy, Spectrosc. Spect. Anal. 37 (3) (2017) 778–782. (in Chinese) [25] N.N. Zhang, Z.R. Zheng, C.C. Han, Solvent concentration distribution in acetone/PMMA coating solution measured by laser confocal Raman spectroscopy method, Laser Optoelectron. Prog. 54 (12) (2017) 123101. [26] M. Schwaab, J.C. Pinto, Optimum reference temperature for reparameterization of the Arrhenius equation. Part 1: Problems involving one kinetic constant, Chem. Eng. Sci. 62 (10) (2007) 2750–2764. [27] S. Hofmann, G. Csányi, A.C. Ferrari, M.C. Payne, J. Robertson, Surface diffusion: The low activation energy path for nanotube growth, Phys. Rev. Lett. 95 (3) (2005) 036101. [28] Q. Jiang, S.H. Zhang, J.C. Li, Grain size-dependent diffusion activation energy in nanomaterials, Solid State Commun. 130 (9) (2004) 581–584. [29] M. Okubo, Y. Tanaka, H.S. Zhou, T. Kudo, I. Honma, Determination of activation energy for Li ion diffusion in electrodes, J. Phys. Chem. B 113 (9) (2009) 2840–2847. [30] B. Vogelsanger, B. Ossola, E. Brönnimann, The diffusion of deterrents into propellants observed by FTIR microspectroscopy—Quantification of the diffusion process, Propell. Explos. Pyrot. 21 (6) (1996) 330–336. [31] P. Demontis, J. Kärger, G.B. Suffritti, A. Tilocca, Application of the two-step model to the diffusion of linear diatomic and triatomic molecules in silicalite, Phys. Chem. Chem. Phys. 2 (7) (2000) 1455–1463. |